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Abstract This is the second part of the study by the author on the symmetry of the lin-
earized Boltzmann equation. The issue of the present part is the entropy production and
the Onsager–Casimir reciprocity relation in the steady non-equilibrium systems. After the
discussions on the definition of the entropy, entropy flow, and entropy production in the
non-equilibrium gas systems, the expression of the entropy production in the steady state
is presented. Then, for the systems weakly perturbed from a uniform equilibrium state, the
entropy production is shown to be expressed in terms of the solution of the linearized Boltz-
mann equation. The thermodynamic forces and fluxes and the kinetic coefficients are de-
fined solely from the expression of the entropy production. The conventional-type Onsager–
Casimir relation is shown to hold for the entire range of the Knudsen number in bounded-
and unbounded-domain systems, provided that the state of the gas in a far field is a local
Maxwellian satisfying the Boltzmann equation for the latter. As to the other unbounded-
domain systems, a nonconventional reciprocity is shown to hold.

Keywords Boltzmann equation · Entropy production · Onsager–Casimir relation ·
Representation theorem · Green function

1 Introduction

Recently in [1] we have derived a symmetric relation of global quantities that widely holds
between two different steady problems described by the linearized Boltzmann equation.
On the basis of the relation, we also derived general representations of the mass, momen-
tum, and heat fluxes passing through the domain boundary in terms of the Green functions,
i.e., the system response against the “input” from the surroundings through the boundary
(the representation theorem). Some of its application examples were shown to recover the
cross effects that had been discussed in the literature as the Onsager–Casimir reciprocity
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relation. It suggests a certain connection of the theorem to this reciprocity. Actually, the
representation theorem relies on the symmetry properties embedded in the Boltzmann colli-
sion integral and the reflection kernel on the boundary, which are used in the existing works
for justifying the reciprocity based on the entropy-production consideration. The issue of
the present paper is to clarify that connection. Eventually, we will assert that the conven-
tional type Onsager–Casimir relation does hold for the entire range of the Knudsen number
in bounded- and unbounded-domain systems, provided for the latter that the state of the
gas at a far distance is a local Maxwellian satisfying the Boltzmann equation; in the other
unbounded-domain systems, the Onsager–Casimir relation no longer holds and another reci-
procity holds instead. The situations to be discussed in the present paper form a subclass of
problems studied in [1], and the announced statements will be shown as a consequence of
the representation theorem, especially of the Green reciprocity, established in [1].

According to the non-equilibrium thermodynamics, the entropy production in the local
equilibrium system is expressed by the products of the thermodynamic forces and their
conjugate fluxes. The latter is further expressed by a linear combination of the former in
the linear regime. The coefficients occurring in the combination are called the kinetic co-
efficients. The Onsager–Casimir relation is the reciprocal relation that holds between the
kinetic coefficients. It was justified by the statistical mechanics on the basis of the so-called
micro-reversibility [2, 3]. In the case of gas systems, it was also justified by the kinetic the-
ory based on the first-order Chapman–Enskog theory [2] for the systems such that the state
of the gas is determined not only by the local fluid-dynamic quantities but also their deriv-
atives. Its extension by the use of the second-order (the Burnett order) theory has also been
made (see e.g. [4]). These classical theories are based on the local argument and thus cover
only the continuum or slightly rarefied regimes of small Knudsen numbers.

In the meantime, it has been reported with a reliable numerical evidence that the reci-
procity between global quantities holds for the entire range of the Knudsen number in vari-
ous specific problems of the linearized Boltzmann equation (e.g., [5–8]). Motivated by this
fact, there arose the studies trying to give a theoretical foundation on the basis of the entropy
production consideration. In the regime of intermediate and large Knudsen numbers, the lo-
cal state of the gas is determined not only by its neighboring state but also by the state at a
long distance. Thus, in contrast to the classical theories, those studies necessarily deal with
the total entropy production in the whole system, i.e., the entropy production in the interior
of the gas region and that in an interfacial region at the boundary due to the gas-surface
interaction [4, 9–11]. We shall take the same strategy in the present work.

In the non-equilibrium thermodynamics, the state of the system is determined by the local
state variables and their variation plays the role of action that drives the system away from
the equilibrium state. The response of the system to the action is the induced flow of mass,
heat, etc. This is the origin of the terminology of the thermodynamic force and the conjugate
thermodynamic flux. In gas systems of not necessarily small Knudsen numbers, the state of
the gas is determined by the condition at the boundary, i.e., by the macroscopic quantities
reflecting the state of the surroundings of the considered domain. This means that the action
to the system is the “input” from the surroundings as the boundary data and the response
is the fluxes induced by the solution of the Boltzmann equation. In the present paper, we
try to be faithful as much as possible to this interpretation and define the thermodynamic
forces and their conjugate fluxes for the systems of arbitrary Knudsen number on the basis
of the expression of the entropy production. In the course of discussions, it will be shown
that the entropy production retains its form of the products of the thermodynamic forces and
fluxes only when considered is a bounded or an unbounded domain such that the state at
a far distance is a local Maxwellian satisfying the Boltzmann equation for the latter. It is
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this situation in which we can recover the conventional type Onsager–Casimir relation, as
announced in the first paragraph. In the remaining situation, we need to define the thermody-
namic fluxes in a tricky way from the entropy production. The kinetic coefficients occurring
in these fluxes will be shown to hold a reciprocity relation. However, the entropy produc-
tion is no longer expressed in terms of the thermodynamic fluxes, and the basic premise in
the non-equilibrium thermodynamics in the discussion on the Onsager–Casimir relation is
broken.

The paper is organized as follows. After the definitions of the entropy, its flow, and its
production in nonequilibrium gases in Sect. 2, we describe the class of problems to be dis-
cussed in Sect. 3. Then, in Sect. 4, we rewrite the problems in terms of the perturbed quan-
tities in order to consider the entropy production in weakly perturbed systems. At this stage,
the entropy production is shown to be described by the solution of the linearized problems,
in spite of the fact that it is of the second order of the perturbation. A possible unfavor-
able feature of the entropy production will also be discussed, which leads to considering a
relative entropy production for unbounded-domain systems. Sections 5 and 6 are the core
of the present paper, devoted to develop a theory of reciprocity: the former deals with the
case where the conventional type Onsager–Casimir relation is recovered, while the latter the
case where a nonconventional reciprocity is obtained. Illustrative examples will be given in
Sect. 7, together with the arguments on the validity of [9, 12], and the paper is concluded in
Sect. 8.

2 Preparation

2.1 H Theorem and the Entropy of a Gas in the Non-equilibrium State

Consider the behavior of a monatomic gas that is described by the Boltzmann equation:

∂f

∂t
+ ξi

∂f

∂Xi

= J (f,f ), (1)

where t is the time, X is the position vector, ξ is the molecular velocity, and f (t,X, ξ) is the
velocity distribution function of the gas molecules. We introduce the following functional
of f (the so-called H function):

H(t,X) =
∫

f ln(f/c0)dξ ,

where c0 is a constant to make f/c0 dimensionless. Integration of (1) multiplied by 1 +
ln(f/c0) over the whole space of ξ yields the equation

∂H

∂t
+ ∂Hi

∂Xi

=
∫

ln(f/c0)J (f,f )dξ , (2)

where

Hi =
∫

ξif ln(f/c0)dξ ,

and
∫

J (f,f )dξ = 0 has been taken into account on the right-hand side. As is well-known,
the right-hand side of (2) is non-positive and is zero if and only if f is a (local) Maxwellian.
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When f is a Maxwellian, H and Hi are given by

H = −ρ
(5

2
lnT − lnp + const

)
, Hi = Hvi,

where ρ is the density, T is the temperature, p is the pressure, and vi is the flow velocity
of the gas. Since considered is the calorically perfect gas, the right-hand side of the first
equation is no other than −ρs/R, where s is the specific entropy and R the specific gas
constant defined by R = k/m with k and m being the Boltzmann constant and the mass of
a molecule. From this observation, we are motivated to define the specific entropy s and the
entropy flow ρsi , not only in the (local) equilibrium state but also in the non-equilibrium
state, by

ρs (= −RH) = −R

∫
f ln(f/c0)dξ , (3a)

ρsi (= −RHi) = −R

∫
ξif ln(f/c0)dξ , (3b)

and the specific entropy production �s by

ρ�s = −R

∫
ln(f/c0)J (f,f )dξ . (3c)

We show below the thermodynamic suitability of the definition (3) [13].
Consider a gas in a fixed control volume V . Integration of (2) multiplied by −R yields

d

dt

∫
V

(−RH)dX −
∫

∂V

(−RHi)nid� = −R

∫
V

∫
ln(f/c0)J (f,f )dξdX ≥ 0, (4)

where ni and d� are the inward unit vector normal to the boundary ∂V and the surface
element at position X. The equality holds if and only if f is a (local) Maxwellian. We
examine the following two situations:

1. Let the volume V be surrounded by an adiabatic wall such that the gas molecules are
specularly reflected there. Then, on the boundary ∂V , Hini = 0 because f is symmetric
with respect to ξini = 0. Thus (4) is reduced to

d

dt

∫
V

(−RH)dX = −R

∫
V

∫
ln(f/c0)J (f,f )dξdX ≥ 0.

If we employ the definition (3a), the left-hand side represents the time variation of the
total entropy SV = −R

∫
V

HdX in the volume V , and therefore the above relation states
that the entropy does not decrease in an isolated system. It is consistent with the second
law of thermodynamics. Further, the definition (3c) leads to the natural interpretation of
the quantity on the right-hand side, i.e., −R

∫
V

∫
ln(f/c0)J (f,f )dξdX is the entropy

production �SV in the volume V defined by �SV = ∫
V

ρ�sdX.
2. Let the volume V be surrounded by a solid heat bath at temperature Tw, which does not

permit the molecular exchange through the boundary ∂V . Since the relaxation process
in a solid is much faster than that in a gas, we assume the local equilibrium in the solid
except for an infinitesimally thin layer adjacent to the boundary ∂V . The present case
requires a more careful consideration about the boundary than the previous case. We
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Fig. 1 A gas surrounded by a
solid heat bath. The volume V is
the gas region whose boundary
∂V is indicated by a solid line.
The volume V− is the white
region inside the gas whose
boundary ∂V− is indicated by a
dash-dotted line. The volume V+
is the region whose boundary
∂V+ is inside the heat bath
indicated by a dashed line. The
volume �V is the colored region

consider two control volumes V− and V+ whose boundaries ∂V− and ∂V+ are immedi-
ately next to ∂V on the gas and solid sides respectively, i.e., V− ⊂ V ⊂ V+. Let us denote
by �V the infinitesimally thin volume bounded by ∂V− and ∂V+, i.e., V+ = V− + �V

(see Fig. 1). The entropy balance for the thin volume �V reads

dS�V

dt
−

∫
∂V+

ρwswinid� +
∫

∂V−
ρsinid� = �S�V ≥ 0, (5)

where S�V and �S�V are the total entropy and the total entropy production in the volume
�V , respectively; ρw is the density of the solid; and ρwswi is the entropy flow in the solid.
The most right equality in (5) holds if and only if the volume �V is in equilibrium with
the heat bath. Since ∂V+ is inside the solid and the local equilibrium is assumed there,
the entropy flow ρwswi is given by ρwswi = qwi/Tw, where qwi is the heat flow. Thus the
sum of (5) and (4) with V and ∂V being replaced by V− and ∂V− yields

d

dt

(
S�V − R

∫
V−

HdX

)
−

∫
∂V+

qwini

Tw
d� +

∫
∂V−

(ρsi + RHi)nid�

= �S�V − R

∫
V−

∫
ln(f/c0)J (f,f )dξdX ≥ 0.

If we employ the definition (3a), the first term on the left-hand side represents the time
variation of the total entropy SV+ in the total volume V+ defined by the sum of the en-
tropies S�V in �V and SV− in V−, i.e. SV+ = SV− + S�V . Further if we employ the
definition (3b), the last term on the left-hand side vanishes. Therefore, with the aid of the
definition (3c), we can rewrite the above relation as

dSV+
dt

− 1

Tw

∫
∂V+

qwinid� = �SV+ ≥ 0, (6)

where �SV+ is the total entropy production in the volume V+ defined by �SV+ =
�SV− + �S�V . Because of the properties of

∫
ln(f/c0)J (f,f )dξ and �S�V , the most

right equality holds if and only if the gas is in the equilibrium with the heat bath. The
second term on the left-hand side represents the heat transferred to the heat bath divided
by its temperature. Therefore, the relation (6) states that the variation of the total entropy
in the volume V+ is not smaller than the heat from the heat bath divided by its tempera-
ture, which is consistent again with the second law of thermodynamics. Further it states
that, aside from the heat transfer, the entropy variation is due to the entropy production
in the volume V+, which is always non-negative.
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Fig. 2 Surface element d� on
the interface and the
infinitesimally thin volume dV .
The hatched area is d� and the
colored volume is dV . In the
figure, the control surfaces d�L
and d�G are also shown. The
former is the control surface
inside the condensed phase, while
the latter is that inside the gas

In this way, we see that (3) is the appropriate definition of the entropy, entropy flow, and
entropy production inside the gas. In the present paper, we adopt it as their definition and
rewrite (2) as

∂ρs

∂t
+ ∂ρsi

∂Xi

= ρ�s (≥ 0). (7)

This is the equation of the (local) entropy balance.

2.2 Entropy Flow Through the Interface and Interfacial Entropy Production
in the Steady State

In Sect. 2.1, we considered a gas in an adiabatic container or a gas surrounded by a solid
heat bath for the discussion of the suitable definitions of the entropy, entropy flow, and
entropy production. The entropy balance in the thin volume �V plays an important role
in the latter case. In the present paper, we are going to discuss the entropy production in
the gas that may be bounded not only by the simple solid wall but also by the interface
with its condensed phase (its liquid or solid), on the latter of which the molecular exchange
may occur in general. An imaginary boundary set in a gas will also be considered. We shall
call the simple solid surface and the interface with the condensed phase the real boundary.
In the present subsection, we discuss the local entropy balance for an infinitesimally thin
volume containing the real boundary in its interior. We shall limit ourselves to the steady
situation. As in Sect. 2.1, we assume the local equilibrium inside the solid/liquid except for
an infinitesimally thin layer adjacent to the boundary.

Let us consider a surface element d� on the real boundary and control surfaces d�G and
d�L as shown in Fig. 2. For the sake of simple notation, we set the X1-axis in the direction
normal to the boundary pointing to the gas side in the present subsection. Let us denote
the quantities on d�L by putting the superscript L. Because of the assumption of the local
equilibrium, the entropy flow ρLsL

1 passing through the d�L is given by [2, 14]

ρLsL
1 = ρLsLvL

1 + qL
1

T L
, (8)

where ρ, s, vi , qi , and T denote respectively the density, specific entropy, flow velocity, heat
flow and temperature. The first term on the right-hand side represents the entropy carried
by the flow vL

i and the second the entropy exchange due to the heat transfer. We are going
to show that the right-hand side of (8) can be rewritten in terms of the quantities related to
the velocity distribution function f of gas molecules in the steady situation. The conserva-
tion laws of the mass, momentum tangential to the boundary, and energy are used for this
purpose.
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Consider the conservation of the mass, tangential momentum, and energy in the thin
volume dV shown in Fig. 2. In the steady situation, since there is no increase of mass,
momentum, and energy, we have the relations

ρv1 = ρLvL
1 , (9)

ρv1vk + p1k = ρLvL
1 vL

k + pL
1k (k = 2,3), (10)

q1 + p1j vj + ρv1

(
e + 1

2
|v|2

)
= qL

1 + pL
1j v

L
j + ρLvL

1

(
eL + 1

2
|vL|2

)
, (11)

where pij and e denote respectively the stress tensor and specific internal energy. We have
used the fact that the volume dV is infinitesimally thin to neglect the exchanges through the
side surface of dV . With the aid of (9) and (10), the energy conservation (11) is rewritten as

q1 + p1j (vj − vL
‖j ) + ρv1

(
e + 1

2
|v − vL

‖ |2
)

= qL
1 + pL

11v
L
1 + ρv1

(
eL + 1

2
|vL

1 |2
)

, (12)

where vL
‖ = (0, vL

2 , vL
3 ). Since the quantities with superscript L are those in the local equilib-

rium state, the right-hand side of (12) is rewritten by the use of the thermodynamic relation
μL = eL − T LsL + pL/ρL [14, 15] as

qL
1 + pL

11v
L
1 + ρv1

(
eL + 1

2
|vL

1 |2
)

= T L

(
qL

1

T L
+ ρLvL

1 sL

)
+ ρv1

(
μL + 1

2
|vL

1 |2
)

, (13)

where μ is the specific Gibbs free energy (or the chemical potential). Here we have used the
fact that the diagonal components of the stress tensor are equal to the pressure in the local
equilibrium state, i.e., pL

11 = pL. On the other hand, the left-hand side of (12) is rewritten as

q1 + p1j (vj − vL
‖j ) + ρv1

(
e + 1

2
|v − vL

‖ |2
)

= −RT L
∫

ξ1f ln(M/c0)dξ + ρv1

(
RT L ln

a

c0(2πRT L)3/2

)
, (14)

by the use of the following Maxwellian

M = a

(2πRT L)3/2
exp

(
−|ξ − vL

‖ |2
2RT L

)
(a: constant), (15)

because the quantities without superscript L are defined by f as follows:

ρ =
∫

f dξ , ρvi =
∫

ξif dξ , T = 1

3ρR

∫
|ξ − v|2f dξ , e = 3

2
RT,

p = ρRT, pij =
∫

(ξi − vi)(ξj − vj )f dξ , qi = 1

2

∫
(ξi − vi)|ξ − v|2f dξ .

Plugging (13) and (14) into (12), we obtain

qL
1

T L
+ ρLvL

1 sL = −R

∫
ξ1f ln

M
c0

dξ + ρv1

T L

(
RT L ln

a/c0

(2πRT L)3/2
− μL − |vL

1 |2
2

)
. (16)
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We further simplify this expression by the following separate discussions:

(i) For the simple solid surface, ρv1(= ρLvL
1 ) = 0 and (16) is reduced to

qL
1

T L
+ ρLvL

1 sL = −R

∫
ξ1f ln(MCR/c0)dξ , (17)

where MCR is the M with a being an arbitrary constant. MCR represents the velocity
distribution function of the gas that is in the thermal equilibrium with the solid surface
at temperature T L resting relative to the surface. The arbitrariness of a comes from that
of the gas density that is in thermal equilibrium with the simple solid surface.

(ii) For the interface with the condensed phase, ρv1 is not necessarily zero. Let us introduce
the Maxwellian MPR that is the M with the constant a being the saturation density ρsat

of the gas at temperature T L. That is, MPR represents the velocity distribution function
of the gas that is in phase equilibrium with the condensed phase at temperature T L

resting relative to the interface. Let us denote by putting the subscript “sat” the gas
quantities based on MPR in place of f . From (3a), the entropy ssat is given by

ρsatssat = ρsat

T L

[
esat − RT L ln

ρsat

c0(2πRT L)3/2

]

= ρsat

T L

[
esat + psat

ρsat
− RT L

(
1 + ln

ρsat

c0(2πRT L)3/2

)]
.

For the quantities with subscript “sat,” we may use the thermodynamic relation μsat =
esat − T Lssat + psat/ρsat, so that we obtain from the above equation

μsat = RT L

(
1 + ln

ρsat

c0(2πRT L)3/2

)
.

Since MPR is the velocity distribution function of the gas that is in phase equilibrium
with the condensed phase, μsat is equal to μL. Therefore, (16) is reduced to

qL
1

T L
+ ρLvL

1 sL = −R

(∫
ξ1f [1 + ln(MPR/c0)]dξ + ρv1

|vL
1 |2

2RT L

)
.

Finally, consider the second term in the big parentheses. In general, the density of the
condensed phase is much larger than that of gas (ρL � ρ). Thus, we take the limit
ρ/ρL → 0 with keeping the relation ρv1=ρLvL

1 [see (9)]. Then, (vL
1 )2=v2

1(ρ/ρL)2 → 0
and the second term vanishes; (16) is finally reduced to1

qL
1

T L
+ ρLvL

1 sL = −R

∫
ξ1f [1 + ln(MPR/c0)]dξ . (18)

By plugging (17) or (18) into (8), we obtain the following expression of the entropy flow
ρLsL

1 for the real boundary:

ρLsL
1 = −R

∫
ξ1f [1 + ln(Mw/c0)]dξ , (19)

1There is a similar discussion in [9], where the term ρv1
|vL

1 |2
2RT L seems dropped from the beginning.



Symmetry of the Linearized Boltzmann Equation II 953

where Mw represents MCR for the simple solid boundary and MPR for the interface with
the condensed phase. Note that

∫
ξ1f dξ = 0 for the simple solid boundary.

Next, we consider the entropy balance for the thin volume dV . Denoting by �swd� the
entropy production in dV , the entropy balance reads

�sw = ρs1 − ρLsL
1 ,

since the steady state is considered. Here again we have used the fact that the volume dV is
infinitesimally thin. The first term on the right-hand side represents the entropy flow passing
through the control surface d�G on the gas side and the second that passing through d�L

on the solid/liquid side. Substitution of (19) and (3b) leads to

�sw = ρs1 + R

∫
ξ1f [1 + ln(Mw/c0)]dξ (20)

= −R

∫
ξ1f [ln(f/Mw) − 1]dξ . (21)

From the thermodynamic point of view, the entropy production �sw is required to be non-
negative and to be zero in the equilibrium state, i.e., f = Mw. If f obeys the boundary
condition (23) that appears later, we can prove this requirement to be fulfilled by the use of
the Darrozes–Guiraud inequality [16–18] and its extension (Appendix A; see also [9, 18]).
Due to this fact, it is often said that the kinetic boundary condition (23) is consistent with
the second law of thermodynamics.

3 Problem

3.1 Formulation and Entropy Production in the System

Consider the steady behavior of the gas in a domain D which can be described by the Boltz-
mann equation:

ξi

∂f

∂Xi

= J (f,f ). (22)

The boundary ∂D of the domain D is split into two parts as ∂D = ∂Dw + ∂Dg. Here ∂Dw is
the real boundary, i.e., a simple solid surface or an interface with the condensed phase, and
∂Dg is the imaginary boundary set in the gas, i.e., the gas may occupy a region next to D
across ∂Dg.

On the real boundary ∂Dw, f is assumed to obey the following boundary condition:

f (X, ξ) = g(X, ξ) +
∫

ξ∗
n <0

|ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)f (X, ξ ∗)dξ ∗, ξn > 0, (23)

where g is a given non-negative function (g ≥ 0) and ξn = ξ · n with n being the unit vector
inward normal to the boundary at position X. For a simple solid boundary, g = 0. The R is
the so-called scattering kernel defined for ξn > 0 and ξ ∗

n < 0. If necessary, we denote it by
RCR for a simple solid boundary and by RPR for an interface with the condensed phase. We
require R to have the following properties [18]:



954 S. Takata

1. R(ξ ∗, ξ ;X) ≥ 0 for ξn > 0 and ξ ∗
n < 0.

2. Consider the velocity distribution function Mw of the gas that is in equilibrium with the
boundary at temperature Tw moving with velocity vw:

Mw = a

(2πRTw)3/2
exp

(
−|ξ − vw|2

2RTw

)
,

where

a =
{

an arbitrary constant for R = RCR,

pw/RTw for R = RPR,

and pw is the saturation pressure of the gas at temperature Tw. The velocity vw of the
boundary does not have the component normal to the boundary (vw · n = 0) because it
does not deform in the steady problem. For this Maxwellian, the following relation holds:

Mw(X, ξ) = g(X, ξ) +
∫

ξ∗
n <0

|ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)Mw(X, ξ ∗)dξ ∗, ξn > 0,

and no other Maxwellians satisfy this relation (the uniqueness condition, for short).2

3. The kernel R satisfies the condition of detailed balance [4, 17],3 i.e.,

|ξ ∗
n |R(ξ ∗, ξ ;X)Mw(X, ξ ∗) = |ξn|R(−ξ ,−ξ ∗;X)Mw(X, ξ)

for ξn > 0 and ξ ∗
n < 0.

As to the imaginary boundary ∂Dg, the condition to be imposed depends on whether the
domain D is bounded or unbounded.

(i) In the case of an unbounded domain D, we assume that ∂Dw is confined in a finite
region, that is, there is a sphere of finite radius containing the real boundary inside. ∂Dg

is then identical to a sphere surface of radius r with r → ∞. Henceforth, we denote the
imaginary boundary of this case by ∂D∞

g . We assume that the asymptotic form of f for
large |X| is given:

f (X, ξ) → η(X, ξ), as |X| → ∞. (24a)

The function η is required to satisfy the Boltzmann equation (22) (see footnote 4 ap-
pearing soon later). It should be noted that spatially one and two dimensional problems
are excluded.

(ii) In the case of bounded domain D, f is assumed to obey the following condition

f (X, ξ) =
∫

∂Dg

d�′
∫

ξ ′
n′ <0

dξ ′P(X′, ξ ′,X, ξ)
η(X, ξ)

η(X′, ξ ′)
f (X′, ξ ′),

ξn > 0, X ∈ ∂Dg, (24b)

2The uniqueness condition excludes the specular reflection boundary from ∂Dw.
3As remarked in footnote 16 in Appendix A, the condition of detailed balance is not necessarily required to
make the kinetic boundary condition consistent with the second law of thermodynamics. Rather it is required
to derive the symmetric relation and the representation theorem in [1]. The reciprocity to be shown in the
present paper are obtained by fully relying on the results in [1].
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where ξ ′
n′ = ξ ′ ·n′, n′ and d�′ denote the unit vector inward normal to the boundary and

the surface element at position X′, and η is a given positive function.4 We require P to
have the following properties:
(a) P(X′, ξ ′,X, ξ) ≥ 0 for any ξn > 0 and ξ ′

n′ < 0.
(b) The following equality holds for any ξn > 0:

∫
∂Dg

d�′
∫

ξ ′
n′<0

dξ ′P(X′, ξ ′,X, ξ) = 1.

(c) The following relation holds for any ξn > 0 and ξ ′
n′ < 0:

|ξn|η(X, ξ)P(X′, ξ ′,X, ξ) = |ξ ′
n′ |η(X′, ξ ′)P(X,−ξ ,X′,−ξ ′).

(d) The P is the kernel such that the following relation holds for any f :

∫
∂Dg

∫
ξn

[
f

(
ln

f

η
− 1

)
+ η

]
dξd� = 0.

Now let us consider the total entropy production, which we denote by �Stotal, in the sys-
tem under consideration. Here the “total” means that we consider the sum of the production
inside the gas region D and that in the infinitesimally thin volume containing the real bound-
ary inside. We denote the former by �Sg and the latter by �Sw. The expression of �Sg is
obtained by integrating (7) over the domain D:

�Sg

(
=

∫
D

ρ�sdX

)
= −

∫
∂D

ρsinid� = −
∫

∂Dw

ρsinid� −
∫

∂Dg

ρsinid�, (25)

where the Gauss divergence theorem has been used. On the other hand, the expression of
�Sw is obtained by the integration of (20) with ξ1 and Mw being replaced by ξn and Mw

over the real boundary ∂Dw:

�Sw

(
=

∫
∂Dw

�swd�

)
=

∫
∂Dw

ρsinid� + R

∫
∂Dw

∫
ξnf [1 + ln(Mw/c0)]dξd�. (26)

Thus, �Stotal is expressed by the sum of (25) and (26) as

�Stotal = R

∫
∂Dw

∫
ξnf [1 + ln(Mw/c0)]dξd� −

∫
∂Dg

ρsinid�,

which is eventually rewritten as

�Stotal = R

∫
∂Dw

∫
ξnf ln(Mw/c0)dξd� + R

∫
∂Dg

∫
ξn

(
f ln

η

c0
− η

)
dξd�

+ R

∫
∂Dg

∫
ξn

[
f

(
ln

f

η
− 1

)
+ η

]
dξd�, (27)

4Later at the end of Sect. 4.1, we shall restrict η of this case a Maxwellian whose average velocity has no
component normal to the boundary. Incidentally, in (24a), η is enough to be defined only at a far field, but it
will also be assumed later to satisfy (22) for the whole space of X, i.e., in R

3. The generality at the present
stage is merely for the sake of easy correspondence to [1].
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with the aid of (3b) and the mass conservation law. Note that the last term on the right-hand
side vanishes when D is a bounded domain [see the property (d) of P ].

3.2 Remark on the Imaginary Boundary of a Bounded Domain

Before proceeding further, we make an observation of the properties of P in the present
subsection. We will show that the property (d) puts strict limitations on the kernel P .

Consider the kernel P without the property (d). As far as P is a usual positive function,
the following statement holds:

Lemma 1 For any f , the relation

∫
∂Dg

∫
ξn

[
f

(
ln

f

η
− 1

)
+ η

]
dξd� ≤ 0,

holds, and the equality holds if and only if f/η is a constant.

Proof Let F be a strictly convex function. Taking into account the properties (a) and (b) of
P , we have from (24b)

F

(
f

η

)
= F

(∫
∂Dg

∫
ξ ′
n′ <0

P(X′, ξ ′,X, ξ)
f ′

η′ dξ ′d�′
)

≤
∫

∂Dg

∫
ξ ′
n′ <0

P(X′, ξ ′,X, ξ)F

(
f ′

η′

)
dξ ′d�′,

for ξn > 0 on X ∈ ∂Dg, where f ′ and η′ represent f (X′, ξ ′) and η(X′, ξ ′) respectively. The
most right equality holds if and only if f (X′, ξ ′)/η(X′, ξ ′) is a constant with respect to X′

and ξ ′ in the range ξ ′
n′ < 0. Because of the property (b), the equality condition is reduced

to that f/η is a constant over the whole range of ξ and X ∈ ∂Dg. Multiplying the above
equation by ξnη and integrating it over the range of ξn > 0 and X ∈ ∂Dg, we have

∫
∂Dg

∫
ξn>0

ξn ηF

(
f

η

)
dξd�

≤
∫

∂Dg

∫
ξn>0

ξn η

(∫
∂Dg

∫
ξ ′
n′ <0

P(X′, ξ ′,X, ξ)F

(
f ′

η′

)
dξ ′d�′

)
dξd�

=
∫

∂Dg

∫
ξn>0

∫
∂Dg

∫
ξ ′
n′ <0

|ξ ′
n′ |η′P(X,−ξ ,X′,−ξ ′)F

(
f ′

η′

)
dξ ′d�′dξd�

=
∫

∂Dg

∫
ξ ′
n′<0

|ξ ′
n′ |η′F

(
f ′

η′

)
dξ ′d�′.

We have used the property (c) from the second to the third line and the property (b) from the
third to the last line. Finally let F(x) = x(lnx − 1) + 1 and transpose the most right-hand
side to the most left-hand side. The desired relation is obtained. �

Lemma 1, especially the equality condition, looks contradictory to the property (d) that
we have required of P . However, if the limitation is raised to P and P may be a generalized
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function, the equality condition of Lemma 1 is loosen and consequently the property (d)
does not contradict the other properties (a)–(c) of P (see [17, 19] for instance). The simplest
example is the case of a specular reflection type or a periodic type boundary. As an illustra-
tion, let us consider the former, i.e., P = δ(X′ − X)δ(ξ ′ − ξ + 2ξnn), where δ is the Dirac
δ-function. If η is even with respect to ξn, this P has the properties (a)–(c) and yields the
relation from (24b) that

f (X, ξ) =
∫

∂Dg

∫
ξ ′
n′<0

P(X′, ξ ′,X, ξ)
η

η′ f
′dξ ′d�′ = f (X, ξ − 2ξnn).

It is easy to show that this relation leads to the property (d). In the same way, the periodic
type boundary can be shown to have the properties (a)–(d).

In summary, the property (d) puts strict limitations on the kernel P . However, the kernel
of our familiar boundary conditions, such as the specular and periodic ones, does have this
property.

4 Entropy Production in Weakly Perturbed Systems

We shall consider the situation where the state of the gas is close to the reference equilibrium
state at rest with density ρ0 and temperature T0. It is convenient to use the dimensionless
quantities expressing the perturbation from the reference state.

4.1 Reformulation in Terms of the Perturbation

Let x and ζ be dimensionless position and molecular velocity vectors defined by x = X/L

and ζ = (2RT0)
−1/2ξ , where L is a reference length. Let φ, τw, Pw, uw, and h be the pertur-

bations of f , Tw, pw, vw, and η from the reference state, i.e., f = ρ0(2RT0)
−3/2(1 + φ)E,

Tw = T0(1 + τw), pw = p0(1 + Pw), vw = (2RT0)
1/2uw, and η = ρ0(2RT0)

−3/2(1 + h)E,
where E(ζ ) = π−3/2 exp(−|ζ |2) and p0 = ρ0RT0. The perturbations φ, τw, Pw, uw, and h

are supposed to be small (|φ|, |τw|, |Pw|, |uw|, |h| � 1). The domain and the boundaries
in x-space corresponding to D, ∂D, ∂Dw, ∂Dg, and ∂D∞

g will be denoted by D, ∂D, ∂Dw,
∂Dg, and ∂D∞

g , respectively.
We will rewrite (27) in terms of the perturbation quantities. We choose c0 in (27) as

c0 = ρ0(2RT0)
−3/2 and denote by σtotal the total entropy production �Stotal divided by

ρ0R(2RT0)
1/2L2, i.e., �Stotal = ρ0R(2RT0)

1/2L2σtotal. By retaining the terms up to the sec-
ond order of the perturbations in (27), we obtain

σtotal =
∫

∂Dw

〈ζngwφ〉dS +
∫

∂Dg

〈ζnh(φ − h)〉dS

+ 1

2

∫
∂Dg

〈ζnh
2〉dS + 1

2

∫
∂Dg

〈ζn(φ − h)2〉dS, (28)

where ζn = ζ · n, gw is a function of x and ζ defined by

gw =
{

2ζiuwi (x) + (|ζ |2 − 5
2 )τw(x) for R = RCR,

Pw(x) + 2ζiuwi (x) + (|ζ |2 − 5
2 )τw(x) for R = RPR,
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and the brackets represent the ζ -moments:

〈�〉 =
∫

�Edζ .

In obtaining (28), we have used the fact that
∫

∂D

〈ζnφ lnE〉dS = 0,

a consequence of the mass and energy conservation laws. It should be noted that the entropy
production is the second order quantity with respect to the perturbation from the reference
state.

Up to this moment, φ is the mere perturbation of f and is the solution of the dimension-
less version of the original boundary-value problem (22)–(24), which is nonlinear. Now let
us consider the solution of the linearized version of this problem and denote it by φ̃. Because
the difference between φ and φ̃ is the second order in φ, we may replace φ by φ̃ in (28).5 To
be more precise, the replacement may cause the third order difference on the right-hand side
in (28). But it is of negligible order in the expression (28). Therefore, hereinafter, we iden-
tify φ with φ̃, i.e., φ is the solution of the following linearized version of the boundary-value
problem (22), (23), and (24):

ζi

∂φ

∂xi

= 2√
π

1

Kn
L(φ), (29a)

φ = gw +
∫

ζ∗
n <0

|ζ ∗
n |E∗

|ζn|E R(ζ ∗, ζ ;x)(φ∗ − g∗
w)dζ ∗, ζn > 0, x ∈ ∂Dw, (29b)

φ = h +
∫

∂Dg

∫
ζ ′
n′ <0

P (x ′, ζ ′,x, ζ )(φ′ − h′)dζ ′dS′

for ζn > 0, x ∈ ∂Dg if D is a bounded domain, (29c)

φ → h as |x| → ∞ if D is an unbounded domain, (29d)

where ζ ′
n′ = ζ ′ · n′. In (29a), Kn is the Knudsen number defined by Kn = �0/L with �0

being the molecular mean free path in the gas at the reference state and L(φ) is the lin-
earized collision integral: L(φ)E = [√πρ0�0/(2RT0)

2]J (E,φE). In (29b), R(·, ·; ·) is the
dimensionless version of the reflection kernel R of the resting real boundary at temperature
T0, i.e., R(·, ·; ·) = (2RT0)

−3/2 R(·, ·; ·).6 If necessary, it will be denoted by RCR and RPR,
corresponding to the notation RCR and RPR. The gw is a function of x and ζ defined by

gw =
{

2ζiuwi (x) + (|ζ |2 − 5
2 )τw(x) for R = RCR,

Pw(x) + 2ζiuwi (x) + (|ζ |2 − 5
2 )τw(x) for R = RPR,

5The right-hand side of (28) with φ replaced by φ̃ is non-negative. It can be shown directly from the lin-

earized system [(29) for φ̃ appearing soon later] by using the well-known property of 〈φ̃L(φ̃)〉 ≤ 0 and the
linearized version of the Darrozes–Guiraud inequality and its extension: 〈ζn(φ̃ − gw)2〉 ≤ 0. The proof of
these inequalities are omitted here.
6The notation R is also used for the specific gas constant. Since no confusion is expected, we use the same
notation for the kernel on ∂Dw for the sake of easy correspondence with [1]. By the same reason, we denote
by P the kernel on ∂Dg, expecting not to be confused with the perturbation part of the pressure.
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where uw ·n = 0 because the steady problem is considered and E∗, φ∗, and g∗
w denote E(ζ ∗),

φ(x, ζ ∗), and gw(x, ζ ∗) respectively. In (29c), dS′ is the surface element at position x ′ and
P (·, ·, ·, ·) is the dimensionless kernel defined by P = (2RT0)

−3/2L−2 P . Corresponding to
the requirement of η in (24a), h in (29d) is a solution of the linearized Boltzmann equation
(29a). φ′ and h′ denote φ(x ′, ζ ′) and h(x ′, ζ ′). It should be reminded that the real boundary
∂Dw is assumed to be confined in a finite region when D is unbounded. Thus, the unbounded
domain in spatially one- and two-dimensional problems are excluded from the present dis-
cussion.

The properties required of R and P are obtained from those required of R and P (see
Sect. 3.1), which we list below:

Properties of R

1. R(ζ ∗, ζ ;x) ≥ 0 for ζn > 0 and ζ ∗
n < 0.

2. Let us denote by ρ0(2RT0)
−3/2g0(x, ζ ) the given non-negative function g(X, ξ) in (23)

for the real boundary with Tw = T0 and vw = 0. Note that g0 = 0 for a simple solid
boundary. The following relation holds:

E = g0 +
∫

ζ∗
n <0

|ζ ∗
n |

|ζn| R(ζ ∗, ζ ;x)E∗dζ ∗, ζn > 0.

3. (The uniqueness condition): Let ϕ(x, ζ ) be ϕ = c0 + ciζi + c4|ζ |2, where c0, ci , and c4

are independent of ζ . Among such ϕ, only (i) ϕ = c0 for R = RCR and (ii) ϕ = 0 for
R = RPR satisfy the relation

ϕE =
∫

ζ∗
n <0

|ζ ∗
n |

|ζn| R(ζ ∗, ζ ;x)ϕ∗E∗dζ ∗, ζn > 0.

4. (The condition of detailed balance):

|ζ ∗
n |R(ζ ∗, ζ ;x)E∗ = |ζn|R(−ζ ,−ζ ∗;x)E for ζn > 0 and ζ ∗

n < 0.

Properties of P

(a) P (x ′, ζ ′,x, ζ ) ≥ 0 for ζn > 0 and ζ ′
n′ < 0.

(b) The following equality holds:

1 =
∫

∂Dg

∫
ζ ′
n′<0

P (x ′, ζ ′,x, ζ )dζ ′dS′, ζn > 0.

(c) |ζn|P (x ′, ζ ′,x, ζ )E = |ζ ′
n′ |P (x,−ζ ,x ′,−ζ ′)E′ for ζn > 0 and ζ ′

n′ < 0.
(d) For any function �(x, ζ ) satisfying

� =
∫

∂Dg

∫
ζ ′
n′<0

P (x ′, ζ ′,x, ζ )�′dζ ′dS′, ζn > 0, x ∈ ∂Dg,

the following equality holds:
∫

∂Dg

∫
ζn�

2EdζdS = 0,

where dS is the surface element at position x.
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Due to the property 3 of R, we may write

gw = Pw + 2ζiuwi +
(

|ζ |2 − 5

2

)
τw,

not only for RPR but also for RCR. For the latter, Pw may be considered as an arbitrary
constant (with respect to ζ ) or as the perturbation part of the saturation pressure of the gas
at temperature Tw.

Before proceeding further, we would like to make h a little more restricted, i.e., we
assume h to fulfill the following:

1. In the case that D is bounded, h is of the form (see footnote 4):

h = P h(x) + 2ζiu
h
i (x) +

(
|ζ |2 − 5

2

)
τh(x) with uh · n = 0. (30)

In view of the fact that h in (29c) may be arbitrarily given, this looks a very strong
restriction. With this h, however, we can cover most of physical problems springing to
our mind (for instance, elementary channel flows such as the Poiseuille, thermal creep,
and Couette flows).

2. In the case that D is unbounded, h solves (29a) for the whole space of x, not only at a
far distance. This requirement is usually fulfilled in the linearized problem.

We shall develop our theory with h satisfying these restrictions. These restrictions, together
with the property (d) of P , make the class of problems to be discussed here narrower that
the counterpart in [1]. We can use the results of [1] in the subsequent discussions.

4.2 Preliminary to the Theory of Reciprocity Relation

Going back to the expression of the entropy production (28), let us consider the last term on
its right-hand side.7 If D is bounded, this term vanishes because of the property (d) of P . If
D is unbounded, φ behaves, in general,

φ − h = 2ζici +
(

|ζ |2 − 5

2

)
c + O(|x|−2)

at a far distance, where c and ci are quantities of O(|x|−1) and are independent of ζ (see
lemma 2 in [1]).8 Thus, 〈ζn(φ − h)2〉 decays sufficiently fast so that

∫
∂Dg

〈ζn(φ − h)2〉dS
vanishes. Hence (28) is reduced to

σtotal =
∫

∂Dw

〈ζngwφ〉dS +
∫

∂Dg

〈ζnh(φ − h)〉dS + 1

2

∫
∂Dg

〈ζnh
2〉dS. (31)

It should be noted that the last term on the right-hand side vanishes if D is bounded, due
to (30). On the other hand, if D is unbounded, this term vanishes only when h is the local
Maxwellian of the form

h = P ∞ + 2ζiu
∞
i + 2ζi�

∞
ij xj +

(
|ζ |2 − 5

2

)
τ∞, (32)

7This term corresponds to the last term on the right-hand side of (27).
8The assumption that ∂Dw is confined in a finite region is inevitable to have this estimate. The estimate given
in [9] is invalid. The problem of a uniform flow past a sphere is a counter-example to the latter.



Symmetry of the Linearized Boltzmann Equation II 961

where P ∞, τ∞, u∞, and �∞ = (�∞
ij ) are independent of x and ζ and further �∞ is an

alternating matrix (�∞
ij = −�∞

j i ). It is seen as follows. Consider the situation where the

domain surrounded by ∂Dg, say D̃, is entirely occupied by the gas, i.e., there is no body
inside. Since h solves (29a) for the whole space of x, so in D̃. Now by taking the brackets
of (29a) multiplied by −h, integrating the result over D̃, and making use of the Gauss
divergence theorem, we obtain

1

2

∫
∂Dg

〈ζnh
2〉dS = − 2√

π

1

Kn

∫
D̃

〈hL(h)〉dx. (33)

As is well known, the right-hand side is nonnegative and vanishes only when h is the colli-
sion invariant. In other words, h must be the linearized local Maxwellian that solves (29a).
The right-hand side of (32) is the most general form of such a Maxwellian [17, 18].

If h for an unbounded domain D is not of the form of (32), the last term of (31) does not
vanish. Even worse, it would diverge, because h different from (32) implies the integration
of a finite quantity over an unbounded domain on the right-hand side of (33). This is not
surprising, because physically the integral on the right-hand side is no other than the entropy
production in D̃ of the background gas that is out of equilibrium. In such a case, it is proper
to consider the entropy production relative to the background state, not to the reference
equilibrium state, i.e.,

σrelative ≡ σtotal − 1

2

∫
∂D

〈ζnh
2〉dS. (34)

The observations in this subsection were lacking in the existing theories and will be
essential in the construction of our theory on the reciprocity based on the entropy production.
In the subsequent sections, we shall develop the theory for the two cases separately, i.e., the
case where h is of the form of (30) or (32) and the case where h is not of the form of (32)
for an unbounded domain. The close examination of the far field behavior made here will
reveal an erroneous conclusion by the theory of Sharipov [9, 12]. We will come back to this
point in Sect. 7 with a specific example (Example 3).

5 Theory of the Onsager–Casimir Relation

In the present section, we exclusively consider the case where
∫

∂Dg
〈ζnh

2〉dS vanishes, i.e.,
h is given by (32) for an unbounded domain and by (30) for a bounded domain. The physical
problems to be studied are summarized as follows:

1. In the original dimensional notation,
(a) the system which is described by the steady boundary-value problem (22), (23), and

(24b) when the domain D is bounded, where R and P respectively have the prop-
erties 1–3 and (a)–(d) in Sect. 3.1. Further η is a local Maxwellian whose average
velocity has no component normal to the boundary ∂Dg.

(b) the system which is described by the steady boundary-value problem (22), (23), and
(24a) when the domain D is unbounded, where R has the properties 1 – 3 in Sect. 3.1
and ∂Dw is confined in a finite region. Further η is a local Maxwellian satisfying (22).

The deviation from the reference state must be small enough.
2. In the notation of the linearized problem, the system which is described by the steady

boundary-value problem (29), where R and P have the properties 1–4 and (a)–(d) in
Sect. 4. h is given by (32) when D is unbounded and by (30) when D is bounded. In the
former case, ∂Dw is confined in a finite region.
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Remember that one and two dimensional problems are excluded from the discussions for
unbounded D or D.

As discussed in Sect. 4.2, the dimensionless total entropy production σtotal is given by

σtotal =
∫

∂Dw

〈ζngw(φ − gw)〉dS +
∫

∂Dg

〈ζnh(φ − h)〉dS (35a)

=
∫

∂Dw

〈ζngwφ〉dS +
∫

∂Dg

〈ζnhφ〉dS. (35b)

The first line is of suggestive form for the discussion in the next paragraph. From the first to
the second line, 〈ζng

2
w〉 = 0 and

∫
∂Dg

〈ζnh
2〉dS = 0 have been used.

Each term on the right-hand side of (35a) is a superposition of the product of φ − gw

(or φ − h) and the source gw (or h) on the boundary. The latter is the source that drives the
system away from the reference equilibrium state. Since φ is a perturbation caused by gw

and h, the fluxes 〈ζngw(φ − gw)〉 and 〈ζngw(φ − h)〉 may be considered as the “response”
of the gas system at each point on the boundary to the “driving forces” gw and h from the
surroundings. According to the non-equilibrium thermodynamics, the entropy production
in the local equilibrium state is expressed by the products of the thermodynamic forces and
their conjugate thermodynamic fluxes. The former are the “driving force” making the system
away from the absolute equilibrium state, while the latter are the response of the system to
the force. Therefore, in the situation under consideration, we may think that the entropy
production retains its form as the products of the thermodynamic forces and their conjugate
fluxes even in the non-equilibrium systems. We shall introduce the thermodynamic forces
and their conjugate thermodynamic fluxes on the basis of the above observation. Further we
introduce the kinetic coefficients by decomposing the thermodynamic fluxes in terms of the
thermodynamic forces. We will show that the kinetic coefficients thus defined satisfy the
same reciprocity as the Onsager–Casimir relation in the non-equilibrium thermodynamics.
We discuss the case of a bounded domain and that of an unbounded domain separately.

5.1 The Case of a Bounded Domain

Since h is given by (30), the equation (35) is rewritten as

σtotal =
∫

∂D

(
JP (x)Pb(x) + Jûb(x)|ub(x)| + JT (x)τb(x)

)
dS, (36)

where

JP (x) = 〈ζnφ〉, Jûb(x) = 〈2ζnζj ûbjφ〉, JT (x) =
〈
ζn

(
|ζ |2 − 5

2

)
φ

〉
,

Pb(x), τb(x), ub(x) =
{

Pw(x), τw(x),uw(x) on x ∈ ∂Dw,

P h(x), τ h(x),uh(x) on x ∈ ∂Dg,

and ûb is the unit vector in the direction of ub; thus ûb · n = 0. Keeping in mind the obser-
vation in the paragraph just before Sect. 5.1, we define the thermodynamic forces by Pb(x),
ub(x), and τb(x) and their conjugate thermodynamic fluxes by JP (x), Jûb(x), and JT (x).9

9In [1], JP (x), Jûb
(x), and JT (x) are respectively denoted by un(x), Pnj ûbj (x), and Qn(x).
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In the meantime, we considered in [1] the boundary-value problem (29a)–(29c) for the
following three cases:

1. Pb(x) = δ(x − y), ub(x) = 0, and τb(x) = 0,

2. Pb(x) = 0, ub(x) = �(y)δ(x − y), and τb(x) = 0,

3. Pb(x) = 0, ub(x) = 0, and τb(x) = δ(x − y),

and denote the respective solutions by G(P ;y), G(�;y), and G(T ;y), where � is a unit vector
tangential to the boundary ∂D at position y. We generically called them the Green function,
because each of them represents the response of the system to the corresponding elemental
external source. The solution of the boundary-value problem (29a)–(29c) can be expressed
by the superposition of the Green functions as

φ(x, ζ ) =
∫

∂D

[Pb(y)G(P ;y)(x, ζ ) + |ub(y)|G(ûb;y)(x, ζ ) + τb(y)G(T ;y)(x, ζ )]dSy, (37)

where dSy is the surface element at position y. Thus the thermodynamic fluxes JP (x),
Jûb(x), and JT (x) are expressed as

⎡
⎢⎣

JP (x)

Jûb(x)

JT (x)

⎤
⎥⎦ =

∫
∂D

⎡
⎢⎢⎣

L
(P ;y)

(P ;x) L
(ûb;y)

(P ;x) L
(T ;y)

(P ;x)

L
(P ;y)

(ûb;x)
L

(ûb;y)

(ûb;x)
L

(T ;y)

(ûb;x)

L
(P ;y)

(T ;x) L
(ûb;y)

(T ;x) L
(T ;y)

(T ;x)

⎤
⎥⎥⎦

⎡
⎢⎣

Pb(y)

|ub(y)|
τb(y)

⎤
⎥⎦dSy, (38)

where

L
(α;y)

(P ;x) = 〈ζnG
(α;y)〉(x), L

(α;y)

(ûb;x)
= 2〈ζnζj ûbjG

(α;y)〉(x),

L
(α;y)

(T ;x) =
〈
ζn

(
|ζ |2 − 5

2

)
G(α;y)

〉
(x) (α = P, ûb, T ).

Because of the form (38), we call the functions L
(α;y)

(α′;x)
the kinetic coefficients, where α, α′ =

P, ûb, T .10 In [1], we have shown that the Green functions are reciprocal (see Lemma 3
and Corollaries 3 and 4 in this reference). Keeping in mind the form (30) of h and the parity
G(�;y) = −G(−�;y) of the Green function, we obtain the reciprocity of the kinetic coefficients
as a direct consequence of that of the Green functions:

Proposition 1 (Onsager–Casimir relation 1: a bounded domain) For any x, y ∈ ∂D, the
following relations hold:

L
(α′;y)

(α;x) = εαεα′L(α;x)

(α′;y)
(α,α′ = P, ûb, T ),

where εP = εT = 1 and εûb = −1.

Proposition 1 tells that the thermodynamic fluxes through the boundary at position x

caused by the thermodynamic forces on y are related to the fluxes at y caused by the forces
on x. This is the most detailed description about the Onsager–Casimir relation in the present
situation, which, to our best knowledge, has not been achieved in the literature. The corre-
sponding detailed description will be derived also in the other cases (Sects. 5.2 and 6).

10In [1], L
(α;y)
(P ;x)

, L
(α;y)

(ûb;x)
, and L

(α;y)
(T ;x)

are denoted by u
(α;y)
n (x), P

(α;y)
ni

ûbi (x), and Q
(α;y)
n (x), respectively.
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It is possible to formulate the theory not based on the point sources and responses but
based on a finite sum of the averaged ones, which is common in the literature. In general,
the external sources on the boundary can be expressed as

Pb(x) =
NP∑
k=1

P
(k)

b (x)X
(k)
P , ub(x) =

Nu∑
k=1

u
(k)

b (x)X(k)
u ,

(39)

τb(x) =
NT∑
k=1

τ
(k)

b (x)X
(k)
T ,

where X
(k)
P , X(k)

u , and X
(k)
T are constants. The way of decomposition is not unique. We may

choose the constants and the corresponding external source distribution P
(k)

b (x), u
(k)

b (x),
and τ

(k)

b (x) as we like. Substitution of (39) into (36) yields

σtotal =
NP∑
k=1

JP(k)X
(k)
P +

Nu∑
k=1

Ju(k)X
(k)
u +

NT∑
k=1

JT (k)X
(k)
T , (40a)

where

JP(k) =
∫

∂D

JP (x)P
(k)

b (x)dS, Ju(k) =
∫

∂D

J
û

(k)
b

(x)|u(k)

b (x)|dS,

(40b)

JT (k) =
∫

∂D

JT (x)τ
(k)

b (x)dS.

We define the thermodynamic forces based on the decomposition (39) as X
(k)
P , X(k)

u , and X
(k)
T

and their conjugate thermodynamic fluxes as JP(k), Ju(k), and JT (k), where 1 ≤ k ≤ NP , Nu,
or NT . In this context, the change of Pb(x), ub(x), and τb(x) is made only through X

(k)
P ,

X(k)
u , and X

(k)
T , with P

(k)

b (x), u
(k)

b (x), and τ
(k)

b (x) being fixed.
Let us denote by φβ(k) (k = 1, . . . ,Nβ ; β = P,u,T ) the solution when X

(k)
β = 1 and the

other thermal forces are zero:

φP(k)(x, ζ ) =
∫

∂D

P
(k)

b (y)G(P ;y)(x, ζ )dSy,

φu(k)(x, ζ ) =
∫

∂D

|u(k)

b (y)|G(û
(k)
b ;y)(x, ζ )dSy,

φT (k)(x, ζ ) =
∫

∂D

τ
(k)

b (y)G(T ;y)(x, ζ )dSy .

Then, (38) is rewritten as

Jα(x) =
NP∑
k=1

L
P(k)

(α;x)X
(k)
P +

Nu∑
l=k

L
u(k)

(α;x)X
(k)
u +

NT∑
k=1

L
T (k)

(α;x)X
(k)
T (α = P, ûb, T ), (41)

where

L
β(k)

(P ;x) = 〈ζnφ
β(k)〉, L

β(k)

(ûb;x)
= 2〈ζnζj ûbjφ

β(k)〉,
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L
β(k)

(T ;x) = 〈ζn

(
|ζ |2 − 5

2

)
φβ(k)〉 (β = P, u, T ).

Substitution into (40b) yields the following expression for the newly defined thermodynamic
fluxes:

Jβ(k) =
NP∑
k′=1

L
P(k′)
β(k) X

(k′)
P +

Nu∑
k′=1

L
u(k′)
β(k) X

(k′)
u +

NT∑
k′=1

L
T (k′)
β(k) X

(k′)
T (β = P,u,T ), (42)

where

[
L

β ′(k′)
P (k) , L

β ′(k′)
u(k) , L

β ′(k′)
T (k)

]
=

∫
∂D

[
L

β ′(k′)
(P ;x)P

(k)

b , L
β ′(k′)
(û

(k)
b ;x)

|u(k)

b |, L
β ′(k′)
(T ;x)τ

(k)

b

]
dS,

with β ′ = P,u,T . In the above integration, P
(k)

b , u
(k)

b , and τ
(k)

b are a function of x. We

call L
β ′(k′)
β(k) the kinetic coefficients based on the decomposition (39), where β, β ′ = P, u, T

and 1 ≤ k, k′ ≤ NP , Nu, or NT . These kinetic coefficients satisfy the following reciprocity,
which is readily obtained from Proposition 1:

Proposition 2 (Onsager–Casimir relation 2: a bounded domain) The following relations
hold

L
β ′(k′)
β(k) = εβεβ ′Lβ(k)

β ′(k′) (β,β ′ = P,u,T ; 1 ≤ k, k′ ≤ NP , Nu, or NT ),

where εP = εT = 1 and εu = −1.

5.2 The Case of an Unbounded Domain

Since h is given by (32), the equation (35) can be rewritten as

σtotal =
∫

∂Dw

(
JP (x)Pw(x) + Jûw(x)|uw(x)| + JT (x)τw(x)

)
dS

+ JP (∞)P ∞ + Jû∞(∞)|u∞| + J
�̂

∞(∞)|ω∞| + JT (∞)τ∞, (43)

with

JP (x) = 〈ζnφ〉(x), Jûw(x) = 〈2ζnζj ûwjφ〉(x),

JT (x) =
〈
ζn

(
|ζ |2 − 5

2

)
φ

〉
(x), x ∈ ∂Dw,

and

JP (∞) =
∫

∂D∞
g

〈ζnφ〉dS, Jû∞(∞) =
∫

∂D∞
g

〈2ζnζj û
∞
j φ〉dS,

J
�̂

∞(∞) =
∫

∂D∞
g

〈2ζnζj �̂
∞
jkxkφ〉dS, JT (∞) =

∫
∂D∞

g

〈
ζn

(
|ζ |2 − 5

2

)
φ

〉
dS,

where ûw = uw/|uw|, û
∞ = u∞/|u∞|, and �̂

∞ = �∞/|ω∞| with ω∞ being the dimen-
sionless angular velocity vector defined by ω∞

i = − 1
2εijk�

∞
jk (or �∞

ij = −εijkω
∞
k ), where



966 S. Takata

εijk is the Eddington epsilon. We also denote �̂
∞

by �(ω̂
∞

), following the notation in [1],
Sect. 4.3.3, where ω̂

∞ = ω∞/|ω∞|. As in the case of a bounded domain, we define the
thermodynamic forces by Pw(x), uw(x), and τw(x) on the real boundary and by P ∞, u∞,
�∞, and τ∞ at infinity. Their conjugate thermodynamic fluxes are defined for the former
three by JP (x), Jûw(x), and JT (x) and for the latter four by JP (∞), Jû∞(∞), J

�̂
∞(∞),

and JT (∞).11

In [1], in addition to the Green functions G(P ;y), G(�;y), and G(T ;y), where y ∈ ∂Dg (see
Sect. 5.1), we considered the boundary-value problem (29a), (29b), and (29d) for the four
cases:

1. P ∞ = 1, u∞ = 0, ω∞ = 0, τ∞ = 0, and gw = 0,
2. P ∞ = 0, u∞ = �, ω∞ = 0, τ∞ = 0, and gw = 0,
3. P ∞ = 0, u∞ = 0, ω∞ = �, τ∞ = 0, and gw = 0,
4. P ∞ = 0, u∞ = 0, ω∞ = 0, τ∞ = 1, and gw = 0,

and denoted the solution for the respective cases by G(P ;∞), G(�;∞), G(�(�);∞), and G(T ;∞),
where � is a unit vector. We also called them the Green functions. Since the solution of the
boundary-value problem (29a), (29b), and (29d) can be expressed by the superposition of
the Green functions:

φ(x, ζ ) =
∫

∂Dw

[Pw(y)G(P ;y)(x, ζ ) + |uw(y)|G(ûw;y)(x, ζ ) + τw(y)G(T ;y)(x, ζ )]dSy

+ P ∞G(P ;∞) + |u∞|G(û∞;∞) + |ω∞|G(�̂
∞;∞) + τ∞G(T ;∞), (44)

the thermodynamic fluxes can be written as follows:

Jα(x) =
∫

∂Dw

(
L

(P ;y)

(α;x) Pw(y) + L
(ûw;y)

(α;x) |uw(y)| + L
(T ;y)

(α;x) τw(y)
)

dSy + L
(P ;∞)

(α;x) P ∞

+ L
(û∞;∞)

(α;x) |u∞| + L
(�̂

∞;∞)

(α;x) |ω∞| + L
(T ;∞)

(α;x) τ∞ (x ∈ ∂Dw;α = P, ûw, T ), (45a)

Jγ (∞) =
∫

∂Dw

(
L

(P ;y)

(γ ;∞)Pw(y) + L
(ûw;y)

(γ ;∞) |uw(y)| + L
(T ;y)

(γ ;∞)τw(y)
)

dSy + L
(P ;∞)

(γ ;∞)P
∞

+ L
(û∞;∞)

(γ ;∞) |u∞| + L
(�̂

∞;∞)

(γ ;∞) |ω∞| + L
(T ;∞)

(γ ;∞)τ
∞ (γ = P, û

∞
, �̂

∞
, T ), (45b)

where ⎡
⎢⎢⎣

L
(α;y)

(P ;x), L
(γ ;∞)

(P ;x)

L
(α;y)

(ûw;x)
, L

(γ ;∞)

(ûw;x)

L
(α;y)

(T ;x), L
(γ ;∞)

(T ;x)

⎤
⎥⎥⎦ =

⎡
⎢⎣

〈ζnG
(α;y)〉, 〈ζnG

(γ ;∞)〉
2〈ζnζj ûwjG

(α;y)〉, 2〈ζnζj ûwjG
(γ ;∞)〉

〈ζn(|ζ |2 − 5
2 )G(α;y)〉, 〈ζn(|ζ |2 − 5

2 )G(γ ;∞)〉

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

L
(α;y)

(P ;∞), L
(γ ;∞)

(P ;∞)

L
(α;y)

(û∞;∞)
, L

(γ ;∞)

(û∞;∞)

L
(α;y)

(�̂
∞;∞)

, L
(γ ;∞)

(�̂
∞;∞)

L
(α;y)

(T ;∞), L
(γ ;∞)

(T ;∞)

⎤
⎥⎥⎥⎥⎦ =

∫
∂D∞

g

⎡
⎢⎢⎢⎣

〈ζnG
(α;y)〉, 〈ζnG

(γ ;∞)〉
û∞

j 〈2ζnζjG
(α;y)〉, û∞

j 〈2ζnζjG
(γ ;∞)〉

�̂∞
jkxk〈2ζnζjG

(α;y)〉, �̂∞
jkxk〈2ζnζjG

(γ ;∞)〉
〈ζn(|ζ |2 − 5

2 )G(α;y)〉, 〈ζn(|ζ |2 − 5
2 )G(γ ;∞)〉

⎤
⎥⎥⎥⎦dS,

11In the notation in [1], JP (x), Jûw (x), JT (x), JP (∞), Jû∞ (∞), J
�̂

∞ (∞), and JT (∞) are denoted by

un(x), Pnj ûwj (x), Qn(x), −M(∞), −Fj û∞
j

(∞), −Tl ω̂
∞
l

(∞), and −Q(∞).
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with α = P, ûw, T and γ = P, û
∞

, �̂
∞

, T . Note that the variable of integration in the last
integrals over ∂D∞

g is not y but x. We call the L’s the kinetic coefficients.12 In the meantime,
we have shown the reciprocity of the Green functions in [1] (Lemma 3 and Corollaries 7 and
8 in this reference). Keeping in mind the form (32) of h and the notation correspondence
in footnote 12 and making use of the parity G(�;x) = −G(−�;x), G(�;∞) = −G(−�;∞), and
G(�(�);∞) = −G(−�(�);∞) of the Green functions, we find that the following reciprocal rela-
tions between the kinetic coefficients hold as a special case of the reciprocity of the Green
functions in [1]:

Proposition 3 (Onsager–Casimir relation 3: an unbounded domain) For any x, y ∈ ∂Dw,
the following relations hold:

L
(α′;y)

(α;x) = εαεα′L(α;x)

(α′;y)
, L

(γ ;∞)

(α;x) = εαεγ L
(α;x)

(γ ;∞), L
(γ ′;∞)

(γ ;∞) = εγ εγ ′L(γ ;∞)

(γ ′;∞)
,

where α,α′ = P, ûw, T ; γ, γ ′ = P, û
∞

, �̂
∞

, T ; and εP = εT = 1 and εûw = εû∞ =
ε
�̂

∞ = −1.

In the same way as in Sect. 5.1, we can formulate the theory on the basis of a finite sum
of the averaged sources and responses. To do it, we first rewrite the external sources on the
real boundary as

Pw(x) =
NP∑
k=1

P (k)
w (x)X

(k)
P , uw(x) =

Nu∑
k=1

u(k)
w (x)X(k)

u , τw(x) =
NT∑
k=1

τ (k)
w (x)X

(k)
T ,

(46a)
and correspondingly use the following notation for the external sources at infinity

X
(0)
P = P ∞, X(0)

u = |u∞|, X
(0)
T = T ∞, XR = |ω∞|. (46b)

Then, substitution into (43) yields

σtotal = JRXR +
NP∑
l=0

JP(l)X
(l)
P +

Nu∑
l=0

Ju(l)X
(l)
u +

NT∑
l=0

JT (l)X
(l)
T , (47a)

where

JP(0) = JP (∞), Ju(0) = Jû∞(∞), JT (0) = JT (∞), JR = J
�̂

∞(∞),

JP(k) =
∫

∂Dw

JP (x)P (k)
w (x)dS, Ju(k) =

∫
∂Dw

J
û

(k)
w

(x)|u(k)
w (x)|dS, (47b)

JT (k) =
∫

∂Dw

JT (x)τ (k)
w (x)dS (1 ≤ k ≤ NP , Nu, or NT ).

12In [1], L
(γ ;∞)
(P ;x)

, L
(γ ;∞)

(ûw;x)
, and L

(γ ;∞)
(T ;x)

are denoted by u
(γ ;∞)
n (x), P

(γ ;∞)
ni

ûwi (x), and Q
(γ ;∞)
n (x);

−L
(α;y)
(P ;∞)

, −L
(α;y)

(û∞;∞)
, −L

(α;y)

(�̂
∞;∞)

, and −L
(α;y)
(T ;∞)

by M(α;y)(∞), F (α;y)
i

û∞
i

(∞), T (α;y)
i

ω̂∞
i

(∞), and

Q(α;y)(∞); and −L
(γ ;∞)
(P ;∞)

, −L
(γ ;∞)

(û∞;∞)
, −L

(γ ;∞)

(�̂
∞;∞)

, and −L
(γ ;∞)
(T ;∞)

by M(γ ;∞)(∞), F (γ ;∞)
i

û∞
i

(∞),

T (γ ;∞)
i

ω̂∞
i

(∞), and Q(γ ;∞)(∞). See also footnote 10 for L
(α;y)
(P ;x)

, L
(α;y)

(ûw;x)
, and L

(α;y)
(T ;x)

.
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We call X
(l)
P , X(l)

u , X
(l)
T and XR (0 ≤ l ≤ NP , Nu, or NT ) the thermodynamic forces based on

the decomposition (46) and JP(l), Ju(l), JT (l), and JR their conjugate thermodynamic fluxes.
As before, we introduce the notation φβ(k) (k = 1, . . . ,Nβ ; β = P,u,T ) representing the
solution when X

(k)
β = 1 and the other thermodynamic forces are zero:

φP(k)(x, ζ ) =
∫

∂Dw

P (k)
w (y)G(P ;y)(x, ζ )dSy, (48a)

φu(k)(x, ζ ) =
∫

∂Dw

|u(k)
w (y)|G(û

(k)
w ;y)(x, ζ )dSy, (48b)

φT (k)(x, ζ ) =
∫

∂Dw

τ (k)
w (y)G(T ;y)(x, ζ )dSy . (48c)

Then, (45) is rewritten as

Jα(x) =
NP∑
l=0

L
P(l)

(α;x)X
(l)
P +

Nu∑
l=0

L
u(l)

(α;x)X
(l)
u +

NT∑
l=0

L
T (l)

(α;x)X
(l)
T + LR

(α;x)XR, (49a)

Jγ (∞) =
NP∑
l=0

L
P(l)

(γ ;∞)X
(l)
P +

Nu∑
l=0

L
u(l)

(γ ;∞)X
(l)
u +

NT∑
l=0

L
T (l)

(γ ;∞)X
(l)
T + LR

(γ ;∞)XR, (49b)

where x ∈ ∂Dw; α = P, ûw, T ; γ = P, û
∞

, �̂
∞

, T ; and

⎡
⎢⎢⎣

L
β(k)

(P ;x)

L
β(k)

(ûw;x)

L
β(k)

(T ;x)

⎤
⎥⎥⎦ =

⎡
⎢⎣

〈ζnφ
β(k)〉

2〈ζnζj ûwjφ
β(k)〉

〈ζn(|ζ |2 − 5
2 )φβ(k)〉

⎤
⎥⎦ (β = P,u,T ; k = 1, . . . ,Nβ),

⎡
⎣ L

β(k)

(P ;∞), L
β(k)

(�̂
∞;∞)

L
β(k)

(û∞;∞)
, L

β(k)

(T ;∞)

⎤
⎦ =

∫
∂D∞

g

[ 〈ζnφ
β(k)〉, �̂∞

jmxm〈2ζnζjφ
β(k)〉

û∞
j 〈2ζnζjφ

β(k)〉, 〈ζn(|ζ |2 − 5
2 )φβ(k)〉

]
dS,

[
L

P(0)

(α;x), L
u(0)

(α;x), L
T (0)

(α;x), LR
(α;x)

L
P(0)

(γ ;∞), L
u(0)

(γ ;∞), L
T (0)

(γ ;∞), LR
(γ ;∞)

]
=

⎡
⎣L

(P ;∞)

(α;x) , L
(û∞;∞)

(α;x) , L
(T ;∞)

(α;x) , L
(�̂

∞;∞)

(α;x)

L
(P ;∞)

(γ ;∞) , L
(û∞;∞)

(γ ;∞) , L
(T ;∞)

(γ ;∞) , L
(�̂

∞;∞)

(γ ;∞)

⎤
⎦ .

Substitution into (47b) yields the following expression for the newly defined thermodynamic
fluxes:

[
Jβ(l)

JR

]
=

NP∑
j=0

[
L

P(j)

β(l)

L
P(j)

R

]
X

(j)

P +
Nu∑
j=0

[
L

u(j)

β(l)

L
u(j)

R

]
X(j)

u +
NT∑
j=0

[
L

T (j)

β(l)

L
T (j)

R

]
X

(j)

T +
[

LR
β(l)

LR
R

]
XR

(l = 0, . . . ,Nβ;β = P,u,T ), (50)

where the coefficients L’s are as follows:

[
L

β(j)

P (0), L
β(j)

u(0) , L
β(j)

T (0), L
β(j)

R

LR
P(0), LR

u(0), LR
T (0), LR

R

]
=

⎡
⎣L

β(j)

(P ;∞), L
β(j)

(û∞;∞)
, L

β(j)

(T ;∞), L
β(j)

(�̂
∞;∞)

LR
(P ;∞), LR

(û∞;∞)
, LR

(T ;∞), LR

(�̂
∞;∞)

⎤
⎦ ,
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[
L

β(j)

P (k), L
β(j)

u(k) , L
β(j)

T (k)

LR
P(k), LR

u(k), LR
T (k)

]
=

∫
∂Dw

⎡
⎣L

β(j)

(P ;x)P
(k)
w , L

β(j)

(û
(k)
w ;x)

|u(k)
w |, L

β(j)

(T ;x)τ
(k)
w

LR
(P ;x)P

(k)
w , LR

(û
(k)
w ;x)

|u(k)
w |, LR

(T ;x)τ
(k)
w

⎤
⎦dS

(j = 0, . . . ,Nβ;1 ≤ k ≤ NP ,Nu, or NT ;β = P,u,T ).

In the above integration, P (k)
w , û

(k)
w , and τ (k)

w are a function of x. We call L
β ′(l′)
β(l) , L

β ′(l′)
R , LR

β(l),
and LR

R the kinetic coefficients based on the decomposition (46), where β, β ′ = P,u,T and
0 ≤ l, l′ ≤ NP , Nu, or NT . It is readily obtained from Proposition 3 that the new kinetic
coefficients satisfy the following reciprocity relations:

Proposition 4 (Onsager–Casimir relation 4: an unbounded domain) The following relations
hold:

L
β ′(l′)
β(l) = εβεβ ′Lβ(l)

β ′(l′), L
β(l)

R = εRεβLR
β(l),

where β,β ′ = P,u,T ; 0 ≤ l, l′ ≤ NP , Nu, or NT ; and εP = εT = 1 and εu = εR = −1.

5.3 Summary

In Sect. 5, we discussed the case where
∫

∂Dg
〈ζnh

2〉dS vanishes and showed that the ther-
modynamic force, its conjugate thermodynamic flux, and the kinetic coefficients can be
naturally defined solely from the expression of the total entropy production. The resulting
kinetic coefficients satisfy essentially the same reciprocity as (or a straightforward exten-
sion of) the original Onsager–Casimir relation in the non-equilibrium thermodynamics. The
presented reciprocity holds for the entire range of the Knudsen number. The identity of
the Onsager–Casimir reciprocity relation is revealed to be the Green reciprocity established
in [1].

6 Theory of Nonconventional Reciprocity

In the present section, we discuss the remaining case that the domain D is unbounded and∫
∂D∞

g
〈ζnh

2〉dS does not vanish, i.e., h is not of the form (32). The physical problems to be
studied are the following:

1. In the original dimensional notation, the system which is described by the steady
boundary-value problem (22), (23), and (24a), where R has the properties 1–3 in
Sect. 3.1. The domain D is unbounded, while ∂Dw is confined in a finite region. Fur-
ther η is a non local-Maxwellian satisfying (22) for the whole space of X. The deviation
from the reference state must be small enough.

2. In the notation of the linearized problem, the system which is described by the steady
boundary-value problem (29a), (29b), and (29d), where R has the properties 1–4 in
Sect. 4. h is not of the form (32) and satisfies (29a) for the whole space of x. The domain
D is unbounded, while ∂Dw is confined in a finite region.

As discussed in Sect. 4.2, it is proper to consider the relative entropy production σrelative

rather than the total one. The former is given by

σrelative =
∫

∂Dw

〈ζngw(φ − gw)〉dS +
∫

∂D∞
g

〈ζnh(φ − h)〉dS − 1

2

∫
∂Dw

〈ζnh
2〉dS. (51)
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Let us decompose h as

h(x, ζ ) =
N∞∑
k=1

h(k)(x, ζ )X(k)
∞ , (52)

in such a way that each h(k) solves (29a) for the whole space of x, where X(k)∞ is a constant
representing the magnitude of the k-th component of the decomposition. Since 〈ζng

2
w〉 = 0,

we can rewrite (51) as

σrelative =
∫

∂Dw

(
JP (x)Pw(x) + Jûw(x)|uw(x)| + JT (x)τw(x)

)
dS +

N∞∑
k=1

J∞(k)X
(k)
∞ , (53)

where JP (x), Jûw(x), and JT (x) are the same as those at the beginning of Sect. 5.2 and

J∞(k) =
∫

∂D∞
g

〈ζnh(k)(φ − h)〉dS − 1

2

∫
∂Dw

〈ζnh(k)h〉dS. (54)

If we proceeded in a straightforward way, we would define the thermodynamic forces by
Pw(x), uw(x), τw(x), and X(k)∞ and their conjugate thermodynamic fluxes by JP (x), Jûw(x),
JT (x), and J∞(k). Since φ is expressed as

φ(x, ζ ) =
∫

∂Dw

[Pw(y)G(P ;y)(x, ζ ) + |uw(y)|G(ûw;y)(x, ζ )

+ τw(y)G(T ;y)(x, ζ )]dSy +
N∞∑
k=1

X(k)
∞ φ(k;∞)(x, ζ ), (55)

with φ(k;∞) being the solution of the boundary-value problem (29a), (29b), and (29d) with
gw = 0 and h = h(k), the substitution into the definitions of JP (x), Jûw(x), JT (x), and J∞(k)

leads to the definition of the kinetic coefficients in the same way as in Sect. 5. However,
the kinetic coefficients thus defined are not reciprocal, except for those already appeared in
Sect. 5.2.13 That is, the Onsager–Casimir reciprocity relation is not recovered in the present
situation.

In order to obtain a reciprocity, we have to abandon the basic premise in the non-
equilibrium thermodynamics that the entropy production is expressed by the products of
the thermodynamic forces and their conjugate thermodynamic fluxes. We need to introduce
the following fluxes

J̃P (x) ≡ 〈ζnφ〉 = εP JP (x), J̃ûw(x) ≡ 〈2ζn(−ζj )ûwjφ〉 = εûwJûw(x),

J̃T (x) ≡
〈
ζn

(
| − ζ |2 − 5

2

)
φ

〉
= εT JT (x) (εP = εT = 1, εûw = −1), (56)

J̃∞(k) ≡
∫

∂D∞
g

〈ζnh
−
(k)(φ − h)〉dS − 1

2

∫
∂Dw

〈ζnh
−
(k)h〉dS (k = 1, . . . ,N∞),

13If all the component of h in the decomposition (52) are an even or odd function with respect to ζ , or more
precisely if only the even or odd part of h(k) in J∞(k) does contribute to the integrals defining the kinetic
coefficient (54), the reciprocity is recovered in the straightforward way. It is expected to rarely occur, in
viewing the fact that each h(k) is a solution of (29a). Actually, in most cases we encounter the situation where
the condition described in this footnote is violated.
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in place of JP , Jûw , JT , and J∞(k) and define them as the thermodynamic fluxes conjugate to
the thermodynamic forces Pw(x), uw(x), τw(x), and X(k)∞ , where x ∈ ∂Dw and the function
with superscript “−” represents the original function with its argument of molecular velocity
reversed, i.e., �−(x, ζ ) = �(x,−ζ ). The following lemma leads to a suggestive observation
on the above thermodynamic fluxes:

Lemma 2 Let � and � be solutions of (29a) for x ∈ D. Then, 〈ζi�
−�〉 is divergence free,

i.e.,

∂

∂xi

〈ζi�
−�〉 = 0.

Proof Since both � and � solve (29a), ∂
∂xi

〈ζi�
−�〉 can be transformed as

〈
�−ζi

∂�

∂xi

〉
= 2√

π

1

Kn
〈�−L(�)〉 = 2√

π

1

Kn
〈�L(�−)〉

= 2√
π

1

Kn
〈�−L(�)〉 =

〈
�−ζi

∂

∂xi

�

〉
= −

〈
�ζi

∂

∂xi

�−
〉
,

where the well-known properties 〈L(�)�〉 = 〈L(�)�〉 and L(�−) = L(�)− have been
used. The desired equality is obtained by transposing the most right-hand side to the most
left-hand side. �

In view of this lemma, J̃∞(k) is analogous to the others in the sense that the integrands in
its definition in (56) are divergence free and behave as if they were a flow of conservative
quantity such as the mass, momentum, and energy. The surfaces of integration ∂D∞

g and
∂Dw may be replaced with any closed surfaces obtained by their continuous deformation.
On the other hand, J∞(k) in (54) does not have such a property harmonic with the others. The
reversal of the molecular velocity causes this remarkable difference between the fluxes J̃ ’s
and J ’s, and the reciprocity is recovered for the former well-behaved fluxes. The rest of this
section is devoted to show this reciprocity. We stress again that the present thermodynamic
fluxes and the kinetic coefficients induced from them have lost a direct connection to the
entropy production. The entropy production is not expressed in terms of the thermodynamic
fluxes.

To show the reciprocity, which is nonconventional, substitute (55) into the definition of
the fluxes. Then we have

⎡
⎢⎢⎢⎢⎣

J̃P (x)

J̃ûw(x)

J̃T (x)

J̃∞(k)

⎤
⎥⎥⎥⎥⎦ =

∫
∂Dw

⎡
⎢⎢⎢⎢⎢⎣

L̃
(P ;y)

(P ;x) L̃
(ûw;y)

(P ;x) L̃
(T ;y)

(P ;x)

L̃
(P ;y)

(ûw;x)
L̃

(ûw;y)

(ûw;x)
L̃

(T ;y)

(ûw;x)

L̃
(P ;y)

(T ;x) L̃
(ûw;y)

(T ;x) L̃
(T ;y)

(T ;x)

L̃
(P ;y)

(k;∞) L̃
(ûw;y)

(k;∞) L̃
(T ;y)

(k;∞)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣ Pw

|uw|
τw

⎤
⎦dSy +

N∞∑
k′=1

⎡
⎢⎢⎢⎢⎢⎣

L̃
(k′;∞)

(P ;x)

L̃
(k′;∞)

(ûw;x)

L̃
(k′;∞)

(T ;x)

L̃
(k′;∞)

(k;∞)

⎤
⎥⎥⎥⎥⎥⎦

X(k′)
∞ ,

where x ∈ ∂Dw and Pw, uw, and τw in the integral are a function of y. The L̃’s are given by

⎡
⎢⎢⎣

L̃
(α;y)

(P ;x), L̃
(k′;∞)

(P ;x)

L̃
(α;y)

(ûw;x)
, L̃

(k′;∞)

(ûw;x)

L̃
(α;y)

(T ;x), L̃
(k′;∞)

(T ;x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

〈ζnG
(α;y)〉εP , 〈ζnφ

(k′;∞)〉εP

2〈ζnζj ûwjG
(α;y)〉εûw , 2〈ζnζj ûwjφ

(k′;∞)〉εûw

〈ζn(|ζ |2 − 5
2 )G(α;y)〉εT , 〈ζn(|ζ |2 − 5

2 )φ(k′;∞)〉εT

⎤
⎥⎥⎦ ,
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[
L̃

(α;y)

(k;∞)

L̃
(k′;∞)

(k;∞)

]
=

∫
∂D∞

g

[ 〈ζnh
−
(k)G

(α;y)〉
〈ζnh

−
(k)(φ

(k′;∞) − h(k′))〉

]
dS − 1

2

∫
∂Dw

[
0

〈ζnh
−
(k)h(k′)〉

]
dS,

where α = P, ûw, T and ûw and ζ -moments of G’s and h’s are a function of x. We call
L̃’s the kinetic coefficients. The following reciprocal relation holds among these kinetic
coefficients:

Proposition 5 (Nonconventional reciprocity 1) For any x, y ∈ ∂Dw, the following relations
hold:

L̃
(α;y)

(α′;x)
= L̃

(α′;x)

(α;y) , L̃
(k;∞)

(α;x) = L̃
(α;x)

(k;∞), L̃
(k;∞)

(k′;∞)
= L̃

(k′;∞)

(k;∞) ,

where α,α′ = P, ûw, T and 1 ≤ k, k′ ≤ N∞.

Proof By the definitions of L̃
(α;y)

(α′;x)
and L

(α;y)

(α′;x)
, they are related to each other by L̃

(α;y)

(α′;x)
=

εα′L(α;y)

(α′;x)
, where εP = εT = 1 and εûw = −1. Thus the first equality L̃

(α;y)

(α′;x)
= L̃

(α′;x)

(α;y) is
easily obtained from Proposition 3, since ε2

α = ε2
α′ = 1. In order to prove the second and

third equalities, we make use of Proposition 2 in [1]. To illustrate the proof of the second
equality, let α = P . Then, equation (14) in [1] with φA = G(P ;y), hA = 0, gA

w = δ(x − y),
IA = 0 and φB = φ(k;∞), hB = h(k), gB

w = 0, IB = 0 yields the relation

∫
∂D∞

g

〈ζnh
−
(k)G

(P ;y)〉dS =
∫

∂Dw

〈ζnδ(x − y)φ(k;∞)〉dS.

By definition the left-hand side is L̃
(P ;y)

(k;∞), while the right-hand side is reduced to

〈ζnφ
(k;∞)〉(y), which is L

(k;∞)

(P ;y) by definition. But L
(k;∞)

(P ;y) = L̃
(k;∞)

(P ;y) , because εP = 1. This
completes the proof of the second equality for α = P . The second equality for the other α’s
can be proved in the same way. Finally we turn to the proof of the third equality. In this
case, equation (14) in [1] with φA = φ(k;∞), hA = h(k), gA

w = 0, IA = 0 and φB = φ(k′;∞),
hB = h(k′), gB

w = 0, IB = 0 yields the relation

∫
∂D∞

g

〈ζnh
−
(k′)(φ

(k;∞) − h(k))〉dS + 1

2

∫
∂D∞

g

〈ζnh
−
(k′)h(k)〉dS

=
∫

∂D∞
g

〈ζnh
−
(k)(φ

(k′;∞) − h(k′))〉dS + 1

2

∫
∂D∞

g

〈ζnh
−
(k)h(k′)〉dS,

which is reduced to

L̃
(k;∞)

(k′;∞)
+ 1

2

∫
∂D

〈ζnh
−
(k′)h(k)〉dS = L̃

(k′;∞)

(k;∞) + 1

2

∫
∂D

〈ζnh
−
(k)h(k′)〉dS.

The last term on both sides vanishes, which is seen as follows. Since both h(k) and h(k′) solve
(29a), 〈ζih

−
(k)h(k′)〉 is divergence free by Lemma 2. Hence,

∫
∂D

〈ζnh
−
(k)h(k′)〉dS = 0 is obtained

by integrating ∂
∂xi

〈ζih
−
(k)h(k′)〉 = 0 over the domain D and using the Gauss divergence theo-

rem. By changing the role of k and k′, the other one is also seen to vanish. �

Remark 1 Since each h(k) is supposed to solve (29a) in the whole space of x, we see that
both

∫
∂D∞

g
〈ζnh

−
(k)h(k′)〉dS and

∫
∂Dw

〈ζnh
−
(k)h(k′)〉dS vanish. Therefore the second term in the
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definition of L̃
(k′;∞)

(k;∞) vanishes:

L̃
(k′;∞)

(k;∞) =
∫

∂D∞
g

〈ζnh
−
(k)(φ

(k′;∞) − h(k′))〉dS.

Finally, as done in the latter half of Sect. 5.2, we make use of the decomposition (46) of
the external sources on the real boundary and formulate the theory on the basis of a finite
sum of the averaged sources and responses. σrelative is rewritten as

σrelative =
NP∑
k=1

JP(k)X
(k)
P +

Nu∑
k=1

Ju(k)X
(k)
u +

NT∑
k=1

JT (k)X
(k)
T +

N∞∑
k=1

J∞(k)X
(k)
∞ , (57)

where Jβ(k) (β = P,u,T ,∞; k = 1, . . . ,Nβ ) are those defined in (47b) and (54). We call
X

(k)
P , X(k)

u , X
(k)
T and X(k)∞ the thermodynamic forces based on the present decomposition and

J̃P (k), J̃u(k), J̃T (k), and J̃∞(k) defined below their conjugate thermodynamic fluxes:

J̃P (k) =
∫

∂Dw

J̃P (x)P (k)
w (x)dS, J̃u(k) =

∫
∂Dw

J̃
û

(k)
w

(x)|u(k)
w (x)|dS,

J̃T (k) =
∫

∂Dw

J̃T (x)τ (k)
w (x)dS,

and J̃∞(k) is defined by (56).
By the use of the notation (48) again, (56) is rewritten as

[
J̃α(x)

J̃∞(k)

]
=

NP∑
l=1

[
L̃

P (l)

(α;x)

L̃
P (l)

(k;∞)

]
X

(l)
P +

Nu∑
l=1

[
L̃

u(l)

(α;x)

L̃
u(l)

(k;∞)

]
X(l)

u

+
NT∑
l=1

[
L̃

T (l)

(α;x)

L̃
T (l)

(k;∞)

]
X

(l)
T +

N∞∑
l=1

[
L̃

(l;∞)

(α;x)

L̃
(l;∞)

(k;∞)

]
X(l)

∞ (α = P, û
(k)
w , T ),

with

⎡
⎢⎢⎣

L̃
β(k′)
(P ;x), L̃

(k′;∞)

(P ;x)

L̃
β(k′)
(ûw;x)

, L̃
(k′;∞)

(ûw;x)

L̃
β(k′)
(T ;x), L̃

(k′;∞)

(T ;x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

〈ζnφ
β(k′)〉εP , 〈ζnφ

(k′;∞)〉εP

2〈ζnζj ûwjφ
β(k′)〉εûw , 2〈ζnζj ûwjφ

(k′;∞)〉εûw

〈ζn(|ζ |2 − 5
2 )φβ(k′)〉εT , 〈ζn(|ζ |2 − 5

2 )φ(k′;∞)〉εT

⎤
⎥⎥⎦ ,

[
L̃

β(k′)
(k;∞)

L̃
(k′;∞)

(k;∞)

]
=

∫
∂D∞

g

[ 〈ζnh
−
(k)φ

β(k′)〉
〈ζnh

−
(k)(φ

(k′;∞) − h(k′))〉

]
dS − 1

2

∫
∂Dw

[
0

〈ζnh
−
(k)h(k′)〉

]
dS,

and substitution into the newly defined fluxes J̃P (k), J̃u(k), J̃T (k), and J̃∞(k) leads to the ex-
pression

J̃β(k) =
NP∑
k′=1

L̃
P (k′)
β(k) X

(k′)
P +

Nu∑
k′=1

L̃
u(k′)
β(k) X

(k′)
u +

NT∑
k′=1

L̃
T (k′)
β(k) X

(k′)
T +

N∞∑
k′=1

L̃
∞(k′)
β(k) X(k′)

∞ , (58)
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where β = P,u,T ,∞ and k = 1, . . . ,Nβ . The L̃’s are defined as follows.

[
L̃

β ′(k′)
P (k) , L̃

β ′(k′)
u(k) , L̃

β ′(k′)
T (k)

L̃
∞(k′)
P (k) , L̃

∞(k′)
u(k) , L̃

∞(k′)
T (k)

]
=

∫
∂Dw

⎡
⎣ L̃

β ′(k′)
(P ;x)P

(k)
w , L̃

β ′(k′)
(û

(k)
w ;x)

|u(k)
w |, L̃

β ′(k′)
(T ;x)τ

(k)
w

L̃
(k′;∞)

(P ;x) P (k)
w , L̃

(k′;∞)

(û
(k)
w ;x)

|u(k)
w |, L̃

(k′;∞)

(T ;x) τ (k)
w

⎤
⎦dS,

[
L̃

β ′(k′)
∞(k) , L̃

∞(k′)
∞(k)

]
=

[
L̃

β ′(k′)
(k;∞), L̃

(k′;∞)

(k;∞)

]
(β ′ = P,u,T ).

We call the L̃’s occurring in (58) the kinetic coefficients based on the present decomposition.
We can readily show the reciprocity among these kinetic coefficients from Proposition 5 with
the aid of (48):

Proposition 6 (Nonconventional reciprocity 2) The following relations hold:

L̃
β ′(k′)
β(k) = L̃

β(k)

β ′(k′),

where β,β ′ = P,u,T ,∞; k = 1, . . . ,Nβ ; and k′ = 1, . . . ,Nβ ′ .

The proof is omitted here.
In summary, in Sect. 6, we discussed the case where

∫
∂Dg

〈ζnh
2〉dS does not vanish. The

thermodynamic forces and fluxes are defined again solely from the expression of the entropy
production, but the latter is defined in a way different from that in Sect. 5. Consequently, the
entropy production is no longer expressed by the products of the thermodynamic forces and
fluxes. However, thus defined thermodynamic fluxes originate from divergence free flows,
and the kinetic coefficients induced from them satisfy a reciprocity relation for the entire
range of the Knudsen number.

If preferred, the theory developed in Sect. 5.2 may be merged as a special case into
the theory in this section. However, we separated the two for the sake of making clear the
situation where the conventional-type Onsager–Casimir relation does hold.

7 Supplemental Discussions

In this section, we present three illustrative examples for the application of the theory de-
veloped in Sects. 5 and 6. They are common in the literature. Examples 1, 2, and 3 here
correspond to Examples 5, 1, and 3 in [1] and are representative of the cases studied in
Sects. 5.1, 5.2, and 6, respectively. In each example, the present reciprocity theory leads to
the same conclusion as that of the representation theorem in [1]. A critical argument on an
existing theory (e.g., [9, 11, 12]) will be given at the end of the section in the connection to
Example 3, the representative of the nonconventional reciprocity.

Example 1 (Poiseuille flow and thermal transpiration) Consider a rarefied gas in a straight
pipe [Fig. 3(a)]. The geometry of the pipe cross-section S may be arbitrary but is uniform
along the axis [Fig. 3(b)]. Two kinds of gradient are imposed simultaneously: (i) a uniform
gradient of temperature along the pipe wall, i.e., Tw = T0(1 + CT x1) or τw = CT x1; (ii) a
uniform gradient of pressure along the axis, i.e., p = p0(1 + CP x1) or P = CP x1, where
CT and CP are a given constant and are small enough to allow the linearization of the
problem. Then, the problem is described by (29a) and (29b) with gw = CT x1(|ζ |2 − 5

2 )

under the restriction of the perturbed pressure P = CP x1, where ∂Dw in (29b) is to be
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Fig. 3 Flow in a straight pipe. (a) A straight pipe of infinite length. (b) Cross section S and two-dimensional
position vector x⊥ . (c) The domain D for which the entropy production is considered

considered as the entire surface of the pipe (−∞ < x1 < ∞). We assume that the pipe
surface is the locally isotropic boundary [18, 20], so that the solution of the problem can be
sought in the form φ(x, ζ ) = ψ(x⊥, ζ )+x1[CP +(|ζ |2 − 5

2 )CT ], where x⊥ = (x2, x3) and ψ

is odd in ζ1. Hence, if we take D as the domain 0 ≤ x1 ≤ 1 surrounded by the pipe surface
[Fig. 3(c)], the above φ solves the boundary-value problem (29a)–(29c) with P (·, ·, ·, ·)
in (29c) being P (x ′, ζ ′,x, ζ ) = [δ(x ′

1)δ(x1 − 1) + δ(x ′
1 − 1)δ(x1)]δ(x ′

⊥ − x⊥)δ(ζ ′ − ζ ),
and we can apply the reciprocity theory developed in Sect. 5.1 on the basis of the entropy
production σtotal in the domain D. Here, in (29b), ∂Dw is the pipe surface in 0 ≤ x1 ≤ 1
and gw = CT x1(|ζ |2 − 5

2 ). On the other hand, in (29c), ∂Dg = {x|x1 = 0,1 and x⊥ ∈ S} and
h = [CP + (|ζ |2 − 5

2 )CT ]x1.
We apply the second form of the theory in Sect. 5.1 and put NP = NT = 1, Nu = 0,

X
(1)
P = CP , X

(1)
T = CT , P

(1)

b = δ(x1 − 1), and τ
(1)

b = (|ζ |2 − 5
2 )x1. Note that φP(1) is the

solution when CP = 1 and CT = 0 and that φT (1) is the solution when CT = 1 and CP = 0.
The former is the solution of the so-called Poiseuille flow, while the latter that of the thermal
transpiration. From (40a) and (42), we have

σtotal = JP(1) CP + JT (1) CT ,

JP(1) = L
P(1)

P (1)CP + L
T (1)

P (1)CT ,

JT (1) = L
P(1)

T (1)CP + L
T (1)

T (1)CT ,

and the relation L
T (1)

P (1) = L
P(1)

T (1) holds by Proposition 2. By definition, L’s are

[
L

P(1)

P (1) L
T (1)

P (1)

L
P(1)

T (1) L
T (1)

T (1)

]
=

∫
∂D

[
L

P(1)

(P ;x)P
(1)

b (x) L
T (1)

(P ;x)P
(1)

b (x)

L
P(1)

(T ;x)τ
(1)

b (x) L
T (1)

(T ;x)τ
(1)

b (x)

]
dS,

each component of which is eventually reduced to

L
P(1)

P (1) = −
∫

S
〈ζ1φ

P(1)〉dx⊥, L
T (1)

P (1) = −
∫

S
〈ζ1φ

T (1)〉dx⊥,

L
P(1)

T (1) = −
∫

S

〈
ζ1

(
|ζ |2 − 5

2

)
φP(1)

〉
dx⊥, L

T (1)

T (1) = −
∫

S

〈
ζ1

(
|ζ |2 − 5

2

)
φT (1)

〉
dx⊥,

where we have used the conservation laws of mass and energy and, especially for L
P(1)

T (1) and

L
T (1)

T (1), the fact that ψ is odd in ζ1.

As is obvious from the above equation, L
P(1)

P (1) and L
T (1)

P (1) represent the mass flux through
the cross-section of the pipe in the direction opposite to x1 in the Poiseuille flow and thermal
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Fig. 4 A gas flow around a sphere. (a) Evaporation from and condensation onto a volatile sphere. (b) Uni-
form flow and thermophoresis problems for a sphere. In both figures, the thick arrows implies the surface
∂D∞

g is set at an infinitely far distance

transpiration respectively, while L
P(1)

T (1) and L
T (1)

T (1) the heat flux through the cross-section of
the pipe in the same direction in the respective flows. Thus, the thermodynamic fluxes JP(1)

and JT (1) respectively represent the (dimensionless) mass and heat fluxes through the cross-
section of the pipe in the direction opposite to x1. In short, the reciprocity implies that
the mass flux induced in the thermal transpiration is equal to the heat flux induced in the
Poiseuille flow. This is consistent with the result of Example 5 in [1]. �

Example 2 (Evaporation from and condensation onto a volatile sphere) Consider a volatile
sphere in an infinite expanse of a gas at a resting uniform equilibrium state with pressure
p0 and temperature T0 [Fig. 4(a)]. The sphere is a condensed phase of the gas whose tem-
perature is kept at Tw = T0(1 + τw), where τw is a constant. Assuming that τw and the
corresponding perturbed saturation pressure Pw are small enough, we investigate the steady
behavior of the gas in the domain D outside of the sphere.

In the present case, φ is the solution of the boundary-value problem (29a), (29b), and
(29d) with gw = Pw + (|ζ |2 − 5

2 )τw and h = 0, so that we can apply the reciprocity theory
developed in Sect. 5.2 to the domain D. Here, in (29b), ∂Dw is the surface of the sphere
|x| = 1. We make use of the second form in Sect. 5.2 and put NP = NT = 1, Nu = 0,
X

(1)
P = Pw, X

(1)
T = τw, P

(1)

b = δ(|x| − 1), and τ
(1)

b = (|ζ |2 − 5
2 )δ(|x| − 1). Then, from (47a)

and (50), we have

σtotal = JP(1) Pw + JT (1) τw,

JP (1) = L
P(1)

P (1)Pw + L
T (1)

P (1)τw,

JT (1) = L
P(1)

T (1)Pw + L
T (1)

T (1)τw,

and the relation L
T (1)

P (1) = L
P(1)

T (1) holds by Proposition 4. By definition, L’s are

[
L

P(1)

P (1) L
T (1)

P (1)

L
P(1)

T (1) L
T (1)

T (1)

]
=

∫
∂Dw

[
L

P(1)

(P ;x)P
(1)
w (x) L

T (1)

(P ;x)P
(1)
w (x)

L
P(1)

(T ;x)τ
(1)
w (x) L

T (1)

(T ;x)τ
(1)
w (x)

]
dS,
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each component of which is eventually reduced to

L
P(1)

P (1) =
∫

S
〈ζnφ

P(1)〉dS, L
T (1)

P (1) =
∫

S
〈ζnφ

T (1)〉dS,

L
P(1)

T (1) =
∫

S

〈
ζn

(
|ζ |2 − 5

2

)
φP(1)

〉
dS, L

T (1)

T (1) =
∫

S

〈
ζn

(
|ζ |2 − 5

2

)
φT (1)

〉
dS,

where S is an arbitrary closed surface surrounding the sphere and we have used the conser-
vation laws of mass and energy.

Again, as obvious from the above equation, L
P(1)

P (1) and L
T (1)

P (1) represent the mass flux
through the surface S toward a far field in the presence of pressure and temperature differ-
ence respectively, while L

P(1)

T (1) and L
T (1)

T (1) the heat flux in the corresponding cases. Thus, the
thermodynamic fluxes JP(1) and JT (1) respectively represent the (dimensionless) mass and
heat fluxes through the surface S toward a far field. In short, the reciprocity implies that
the mass flux induced by the temperature difference is equal to the heat flux induced by the
pressure difference. This is the same as the result of Example 1 in [1].

Example 3 (Uniform flow and thermophoresis problems for a sphere) Consider a sphere in
an infinite expanse of a gas, where the temperature of the sphere is kept uniformly at T0. At
a far distance, the gas flows with a uniform velocity (2RT0)

1/2(U,0,0) and its pressure and
temperature are respectively p0 and T0(1 + CT x1), where U and CT are a constant small
enough [Fig. 4(b)]. We are interested in the steady behavior of the gas in the domain D

outside of the sphere.
In the present case, φ is the solution of the boundary-value problem (29a), (29b), and

(29d) with gw = 0 and h = 2ζ1U + [x1(|ζ |2 − 5
2 ) −

√
π

2 Knζ1A(|ζ |)]CT , where A is the
solution of L(ζ1A) = −ζ1(|ζ |2 − 5

2 ) satisfying 〈|ζ |2A〉 = 0. In (29b), ∂Dw is the surface
of the sphere |x| = 1. Due to the form of h, there is no hope to recover the conventional
reciprocity, and we apply the theory of nonconventional reciprocity developed in Sect. 6 to
the domain D.

Here we use the first form in Sect. 6 and put N∞ = 2, X(1)∞ = U , X(2)∞ = CT , h(1) = 2ζ1,

and h(2) = x1(|ζ |2 − 5
2 ) −

√
π

2 Knζ1A(|ζ |). Then, from (53) and (56), we have

σtotal = J∞(1) U + J∞(2) CT ,

J̃∞(1) = L̃
(1;∞)

(1;∞)U + L̃
(2;∞)

(1;∞)CT ,

J̃∞(2) = L̃
(1;∞)

(2;∞)U + L̃
(2;∞)

(2;∞)CT .

Here L̃’s are given by

[
L̃

(1;∞)

(1;∞) L̃
(2;∞)

(1;∞)

L̃
(1;∞)

(2;∞) L̃
(2;∞)

(2;∞)

]
=

∫
∂D∞

g

[ 〈ζnh
−
(1)(φ

(1;∞) − h(1))〉 〈ζnh
−
(1)(φ

(2;∞) − h(2))〉
〈ζnh

−
(2)(φ

(1;∞) − h(1))〉 〈ζnh
−
(2)(φ

(2;∞) − h(2))〉

]
dS,

the diagonal components of which are eventually reduced to

[
L̃

(2;∞)

(1;∞)

L̃
(1;∞)

(2;∞)

]
= −

∫
∂Dw

[ −2〈ζ1ζnφ
(2;∞)〉

〈ζn[x1(|ζ |2 − 5
2 ) +

√
π

2 Knζ1A(|ζ |)]φ(1;∞)〉

]
dS.
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We have used the fact that
∫

∂D∞
g

〈ζnh
−
(k)φ

(j ;∞)〉dS = − ∫
∂Dw

〈ζnh
−
(k)φ

(j ;∞)〉dS and∫
∂D∞

g
〈ζnh

−
(k)h(j)〉dS = 0, where j, k = 1,2 (see, e.g., Lemma 2 and Remark 1). Proposi-

tion 5 yields the relation L̃
∞(2)

∞(1) = L̃
∞(1)

∞(2), i.e.,

∫
∂Dw

2〈ζ1ζnφ
(2;∞)〉dS

= −
∫

∂Dw

〈
ζn

(
|ζ |2 − 5

2

)
φ(1;∞)

〉
x1dS −

√
π

2
Kn

∫
∂Dw

〈ζ1ζnAφ(1;∞)〉dS. (59)

As seen from the above equation, L̃
(2;∞)

(1;∞) is the component of the force acting on the sphere
in the direction opposite to x1, i.e., the −x1-component of the momentum transferred from
the gas to the sphere, when U = 0. L̃

(1;∞)

(2;∞) is a more complicated flux when CT = 0: the
first term represents the weighted average of the heat flow from the gas to the sphere with
weight x1, while the second term the total of a generalized flow 〈ζiζ1Aφ(1;∞)〉 from the gas
to the sphere multiplied by (

√
π/2)Kn. The reciprocity relates the force on the sphere in a

resting gas with a uniform temperature gradient (thermophoresis problem or U = 0) to the
latter two fluxes in a uniform gas flow (uniform flow problem or CT = 0). This is the same
as the result of Example 3 in [1].

Incidentally, J∞(1) and J∞(2) are given by

J∞(1) = L
(1;∞)

(1;∞)U + L
(2;∞)

(1;∞)CT ,

J∞(2) = L
(1;∞)

(2;∞)U + L
(2;∞)

(2;∞)CT ,

where
[

L
(1;∞)

(1;∞) L
(2;∞)

(1;∞)

L
(1;∞)

(2;∞) L
(2;∞)

(2;∞)

]
=

∫
∂D∞

g

[ 〈ζnh(1)(φ
(1;∞) − h(1))〉 〈ζnh(1)(φ

(2;∞) − h(2))〉
〈ζnh(2)(φ

(1;∞) − h(1))〉 〈ζnh(2)(φ
(2;∞) − h(2))〉

]
dS

− 1

2

∫
∂Dw

[ 〈ζnh
2
(1)〉 〈ζnh(1)h(2)〉

〈ζnh(2)h(1)〉 〈ζnh
2
(2)〉

]
dS.

In the above equation, 〈ζnh
2
(1)〉 and 〈ζnh(1)h(2)〉 vanish, while 〈ζnh

2
(2)〉 does not. The non-

diagonal components can be reduced only to

L
(2;∞)

(1;∞) = −L̃
(2;∞)

(1;∞), L
(1;∞)

(2;∞) = L̃
(1;∞)

(2;∞) − √
πKn

∫
∂D∞

g

〈ζ1ζnA(|ζ |)φ(1;∞)〉dS,

and the last integral does not vanish. This illustrates the failure of the conventional type
reciprocity.

In footnote 17 in [1], we pointed out that the relation (59) in Example 3 is different from
that given in [12] by Sharipov. It would be proper to explain the source of this discrepancy,
because it suggests a defect of his theory. Since [9] is the most fundamental in his series of
papers (e.g., [9, 11, 12]), we give comments mainly to this reference. At a glance, his theory
covers quite a wide class of problems, much wider than ours. Actually it is not so, which
will be clear soon. In the following discussion, we assume that considered is a monatomic
gas and there is no external force.



Symmetry of the Linearized Boltzmann Equation II 979

As far as the systems of a bounded domain, which is assumed to be surrounded solely
by the real boundary in [9], we do not find any trouble in his theory. Troubles arise in
unbounded-domain systems, where in his case the real boundary is not necessarily confined
in a finite region. Unfortunately, the far field behavior is not well-considered in [9], which
leads to misunderstanding of the applicable range. Below we explain the main points and
related troubles in unbounded-domain systems:

1. In his formulation, a perturbation from a local resting Maxwellian is adopted. Nev-
ertheless, the perturbation is assumed to vanish or to approach a uniform linearized
Maxwellian in a far field. Such an assumption is erroneous in general, because a lo-
cal Maxwellian is not necessarily a solution of the Boltzmann equation. His assump-
tion is admissible only when the reference state is the local Maxwellian satisfying the
Boltzmann equation, which does not allow the variation of pressure and temperature in
the linear regime [see (32)]. Therefore, the reference state must be a uniform resting
Maxwellian in his theory, and the application to the thermophoresis problem is inappro-
priate. The discrepancy arises from the wrong application made in [12].

2. Keeping in mind the item 1, we assume the reference state to be an absolute Maxwellian
and examine his estimate for the behavior of the gas in a far field. Then, the key estimate
(33) in [9] is found to be erroneous, as we have already mentioned in footnote 8. There is
a simple counter example, i.e., a uniform flow past a sphere. Further, (31) in [9] is valid
only when �g there (the control surface in a gas at infinity) is closed. If �g is not closed,
the gas must be at rest in a far field in order for (31) to hold.

3. The above items reveal that it is dangerous to trust unconditionally the applicability con-
ditions given in [9, 12]. We can fix the hole of the theory by our estimate in Sect. 4.2, but
it requires �g to be closed. We do not know whether or not his statement can be validated
in a general context when �g is not closed. We can assure the validity of reciprocity re-
lations predicted by his theory only for a subclass of the problems studied in the present
paper.

More recently, the restriction on the behavior of the gas in a far field was removed in [11],
which allows a resting local Maxwellian to be the reference state, but instead no estimate was
made for the behavior in a far field: the term

∫
∂D∞

g
〈ζnφ

2〉dS in our notation is left untouched
in the expression of the entropy production. Consequently, even if one can formally discuss
the problem as presented in [11], the thermodynamic fluxes necessarily contain the indefinite
moments like 〈ζnφ

(k;∞)φ(k′;∞)〉, which implies that the type of the flux is not determined by
the external sources from the surroundings. This is unsatisfactory both theoretically and
practically.14 Another shortage in [11] is a lack of consideration on possible divergence of
the entropy production. As we pointed out in Sect. 4.2, the entropy production diverges in
most cases in the considered situation and introducing the relative entropy is inevitable. The
example presented in [11] is a very special one-dimensional half-space problem such that
(i)

∫
∂Dg

〈ζnφ
2〉dS can be identified with

∫
∂Dg

〈ζnh
2〉dS due to the rapid convergence of φ to

h and (ii) the entropy production exceptionally remains finite. It is why the pointed troubles
did not come to the surface. The raised problems are all solved in our theory.15 Providing
the detailed reciprocity (Propositions 1, 3, and 5) is also the advantage of our theory, which

14In the present paper, the reduction of 〈ζnφ2〉 to 〈ζnh(φ − h)〉 and 〈ζnh2〉 is made from (28) to (31). This
process is essential for killing the indefinite moments and for making the resulting reciprocal relation useful.
15One and two dimensional problems in an unbounded domain are excluded from our theory. In one and two
dimensional problems, the boundary data given in one place may influence the state of the gas in a far field.
Thus, the decomposition of the solution into the Green functions is prohibited. However, one-dimensional
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revealed the identity of the Onsager–Casimir relation to be the Green reciprocity. Proposing
the thermodynamic fluxes (56) for the case of nonconventional reciprocity is another feature
of our theory.

8 Conclusion

In the present paper, we first introduced the thermodynamically appropriate definition of
the entropy, entropy flow, and entropy production on the basis of the Boltzmann H theorem.
Then, we derived the expression of the entropy production in the steady non-equilibrium sys-
tem composed of the gas and the interfacial volume with the infinitesimal thickness at the
real boundary. Aiming at the discussions for weakly perturbed systems, we rewrite the ex-
pression in terms of perturbed quantities and show that the production can be obtained by the
use of the solution of the linearized problem. Then, we determine the thermodynamic forces,
their conjugate thermodynamic fluxes, and the kinetic coefficients solely from the reduced
form of the entropy production, keeping in mind that the boundary data play a role of the
“driving force” and the induced fluxes play a role of the “system response.” We have shown
that the entropy production retains its form as the products of the thermodynamic forces
and fluxes when the domain under consideration is bounded or unbounded, provided for the
latter that the state of the gas at a far distance is a local Maxwellian satisfying the Boltzmann
equation. We have revealed that it is these cases that the conventional type Onsager–Casimir
relation is obtained. In the other systems, i.e., unbounded-domain systems such that the state
of the gas at a far distance is not that local Maxwellian, the entropy production is no longer
expressed by the products of the thermodynamic forces and fluxes, and the basic premise
in the non-equilibrium thermodynamics is broken. We have also presented the reciprocity
that does hold in this situation. These results were obtained by fully relying on the theory
developed in [1], especially on the representation theorem and the Green reciprocity for the
former systems, and are valid irrespective of the Knudsen number of the system. Finally,
we presented illustrative examples and pointed out an erroneous conclusion by an existing
theory [9, 12], together with a critical argument about its foundation.
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Appendix A: Darrozes–Guiraud Inequality in the Steady Problem

In this appendix, we present the Darrozes–Guiraud inequality generalized to include the
case of the interface with the condensed phase, as well as the simple boundary [9, 17, 18].
The generalization seems first made in [9]. We assume the steady state and thus the interface
may move only in its tangential direction.

problems are tractable (much easily than two-dimensional problems) because of the rapid convergence of the
solution at a far distance. The relation between the boundary data on the real boundary and the state of the
gas at a far distance is well-understood by intensive studies of the Knudsen-layer structure.
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Proposition 7 (Generalized Darrozes–Guiraud inequality) Suppose that the velocity distri-
bution function f obey the following condition on the boundary:

f (X, ξ) = g(X, ξ) +
∫

ξ∗
n <0

|ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)f (X, ξ ∗)dξ ∗, ξn > 0, (60)

where g(X, ξ) and R(ξ ∗, ξ ;X) are a given non-negative function satisfying the following
properties:

1. R(ξ ∗, ξ ;X) ≥ 0 for ξn > 0 and ξ ∗
n < 0.

2. Let us denote by Tw the temperature of the boundary and by vw its velocity, where vw ·n =
0. Then, the Maxwellian Mw representing the velocity distribution function of the gas in
the equilibrium with the boundary:

Mw(ξ) = a

(2πRTw)3/2
exp

(
−|ξ − vw|2

2RTw

)
,

with

a =
{

an arbitrary constant for R = RCR,

ρw for R = RPR,

satisfies the relation

Mw(ξ) = g(X, ξ) +
∫

ξ∗
n <0

|ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)Mw(ξ ∗)dξ ∗, ξn > 0, (61)

where ρw is the saturation gas density at temperature Tw and g = 0 for R = RCR. Fur-
ther, any other Maxwellian does not satisfy this relation (the uniqueness condition, for
short).

3. R satisfies the condition of detailed balance:16

|ξ ∗
n |R(ξ ∗, ξ ;X)Mw(ξ ∗) = |ξn|R(−ξ ,−ξ ∗;X)Mw(ξ)

for any ξn > 0 and ξ ∗
n < 0.

Then, the following inequality holds:

−
∫

ξnf

(
ln

f

Mw
− 1

)
dξ ≥ 0. (62)

Obviously the equality holds when f = Mw.

Proof We denote f (X, ξ ∗) and Mw(ξ ∗) by f ∗ and M∗
w in the sequel. Let F be a convex

function and consider the function F(f/Mw). From (60), this function in the range of ξn > 0
is seen to satisfy

F

(
f

Mw

)
= F

(
g

Mw
+

∫
ξ∗
n <0

|ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)
f ∗

Mw
dξ ∗

)

16The desired inequality can be proved under the weaker conditions
∫
ξn>0

RPR(ξ∗, ξ ;X)dξ ≤ 1,

∫
ξn>0

RCR(ξ∗, ξ ;X)dξ = 1,

for ξ∗
n < 0 in place of the condition of detailed balance.
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= F

(
g

Mw
+

(
1 − g

Mw

)∫
ξ∗
n <0

(
1 − g

Mw

)−1 |ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)
f ∗

Mw
dξ ∗

)

≤ g

Mw
F(1) +

(
1 − g

Mw

)
F

(∫
ξ∗
n <0

(
1 − g

Mw

)−1 |ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)
f ∗

Mw
dξ ∗

)
,

(63)

where we have used the Jensen inequality taking into account the fact that 0 ≤ 1−g/Mw ≤ 1
due to the property 1 and (61). Since (61) may be rewritten as

∫
ξ∗
n <0

(
1 − g

Mw

)−1 |ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)
M∗

w

Mw
dξ ∗ = 1,

the Jensen inequality can be applied again to the most right-hand side of (63) to have

F

(
f

Mw

)
≤ g

Mw
F(1) +

(
1 − g

Mw

)
F

(∫
ξ∗
n <0

(
1 − g

Mw

)−1 |ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)
f ∗

Mw
dξ ∗

)

≤ g

Mw
F(1) +

(
1 − g

Mw

)∫
ξ∗
n <0

(
1 − g

Mw

)−1 |ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)
M∗

w

Mw
F

(
f ∗

M∗
w

)
dξ ∗

= g

Mw
F(1) +

∫
ξ∗
n <0

|ξ ∗
n |

|ξn| R(ξ ∗, ξ ;X)
M∗

w

Mw
F

(
f ∗

M∗
w

)
dξ ∗. (64)

It should be noted that (64) is true even when 1 − g/Mw = 0. Multiplying by ξnMw and
integrating the result with respect to ξ for ξn > 0 yields

∫
ξn>0

ξnMwF(f/Mw)dξ

≤ F(1)

∫
ξn>0

ξngdξ +
∫

ξn>0

∫
ξ∗
n <0

|ξ ∗
n |R(ξ ∗, ξ ;X)M∗

wF

(
f ∗

M∗
w

)
dξ ∗dξ

= F(1)

∫
ξn>0

ξngdξ +
∫

ξ∗
n <0

(∫
ξn>0

|ξn|R(−ξ ,−ξ ∗;X)Mwdξ

)
F

(
f ∗

M∗
w

)
dξ ∗

= F(1)

∫
ξn>0

ξngdξ +
∫

ξ∗
n <0

|ξ ∗
n |[M∗

w − g(X,−ξ ∗)]F
(

f ∗

M∗
w

)
dξ ∗.

Here we have used the property 3 from the second to the third line and (61) from the third
to the fourth line. Thus we obtain the inequality

∫
ξnMwF(f/Mw)dξ ≤ F(1)

∫
ξn>0

ξngdξ −
∫

ξ∗
n <0

|ξ ∗
n |g(X,−ξ ∗)F

(
f ∗

M∗
w

)
dξ ∗.

Now let F(x) = x(lnx − 1) + 1. Since F(1) = 0, F(x) ≥ 0, g ≥ 0, and Mw is even in ξn,
we arrive at the desired inequality:

∫
ξnf

(
ln

f

Mw
− 1

)
dξ ≤ 0. �
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